Secciones
Referencias
Resumen
Servicios
Descargas
HTML
ePub
PDF
Buscar
Fuente


Response of forage seed germination to saline solutions under controlled conditions
Respuesta de la germinación de semillas forrajeras a soluciones salinas en condiciones controladas
Journal of the Selva Andina Biosphere, vol.. 8, núm. 2, 2020
Selva Andina Research Society

ARTÍCULOS DE INVESTIGACIÓN

Journal of the Selva Andina Biosphere
Selva Andina Research Society, Bolivia
ISSN: 2308-3867
Periodicidad: Bianual
vol. 8, núm. 2, 2020

Recepción: 01 Agosto 2020

Aprobación: 01 Septiembre 2020

Publicación: 01 Noviembre 2020

Selva Andina Research Society

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.

Resumen: La salinidad es uno de los factores limitantes que afectan negativamente la germinación, emergencia y desarrollo de pastos en la parte baja de la subcuenca del Río Lauca - Oruro, reduciendo la disponibilidad de forrajes para la ganadería. Con el propósito de identificar especies forrajeras tolerantes a la salinidad, se evaluó la capacidad germinativa en soluciones salinas de ocho especies: Agropyron elongatum (Host) P. Beauv., Hordeum muticum J. Presl., Bromus catharticus Vahl., X. Triticosecale Wittmarck, Hordeum vulgare L., Atriplex cristata, Trifolium amabile (L.) Kunth., y Suaeda foliosa Moq. La investigación, se realizó en laboratorios de la Facultad de Ciencias Agrícolas y Naturales – Universidad Técnica de Oruro; a las semillas se aplicó soluciones salinas con cuatro concentraciones de NaCl por un litro de agua destilada: 2.56, 5.12, 7.68 y 10.54 g, y un testigo sin salinidad. Los resultados indican que X. Triticosecale Wittmarck y H. vulgare tienen mayor tolerancia a las soluciones de extrema salinidad y poco afectadas en su capacidad germinativa. Las semillas de A. elongatum, B. catharticus y S. foliosa reducen significativamente la germinación, sin embargo, logran germinar en todos los niveles de salinidad. Las semillas de A. cristata y T. amabile, son las más sensibles a la afectación salina, la germinación se reduce significativamente en todos los niveles de salinidad, incluso se anula en la concentración más alta. Se concluye que estas especies pueden utilizarse como forrajeras para el aprovechamiento de suelos salinizados, en función a la tolerancia máxima determinada.

Palabras clave: Germinación, soluciones salinas especies forrajeras, salinidad, cloruro de sodio.

Abstract: Salinity is one of the limiting factors that negatively affect the germination, emergence, and development of pastures in the lower part of the Lauca - Oruro River sub-basin, reducing the availability of forages for livestock. With the purpose of identifying salinity tolerant forage species, the germination capacity in saline solutions of eight species was evaluated: Agropyron elongatum (Host) P. Beauv., Hordeum muticum J. Presl., Bromus catharticus Vahl., X. Triticosecale Wittmarck , Hordeum vulgare L., Atriplex cristata, Trifolium amabile (L.) Kunth., and Suaeda foliosa Moq. The research was carried out in laboratories of the Faculty of Agricultural and Natural Sciences - Technical University of Oruro; Saline solutions with four concentrations of NaCl per one liter of distilled water were applied to the seeds: 2.56, 5.12, 7.68, and 10.54 g, and control without salinity. The results indicate that X. Triticosecale Wittmarck and H. vulgare have greater tolerance to solutions of extreme salinity and little affected in their germination capacity. The seeds of A. elongatum, B. catharticus and S. foliosa significantly reduce germination, however, they manage to germinate at all salinity levels. The seeds of A. cristata and T. amabile are the most sensitive to saline affectation, germination is significantly reduced at all salinity levels, even at the highest concentration. It is concluded that these species can be used as forage for the use of salinized soils, depending on the maximum tolerance determined.

Keywords: Germination, saline solutions, forage species, salinity, sodium chloride.

Introduction

The seeds germinations is a critical stage of the plants development, they are exposed to adverse factors, salinity and water stress1-3, mainly the decrease in the availability of water in the soil4,5. Most species are sensitive to salinity during germination and emergence stages, that in its growth and development6,7. Germination depends on the availability of water, under conditions of water stress cause poor or no germination the seeds1,8,9. The increase in salinity in soils causes a decrease in water potential, inducing toxic effects on germination10,11. The excessive accumulation of ions, of Cl- or Na + in the soil solution, could be toxic for most species12-14. If have the ability to control the transport and absorption of Na + to the photosynthetic tissue, have the ability to tolerate salinity15,16, mainly in the germination stage, but also it is crucial in the beginning of development and growth17,18. Many species have tolerance to salts by polygenic inheritances, which have the ability to withstand osmotic and ionic stress at cellular level19-23. The salts are not a stimulus in the seeds germination stage, if not, they act as a toxic in early stages of plants. The toxic action of the cation or anion can exceed the effect produced on osmotic pressure24. Salinity reduces the power seeds germination and reduces the development of plants25. Salinity is an important cause for the poor development of forage grasslands and main problems of life systems in the lower basin Lauca River ecosystems, a region the ancestral nation Uru Chipaya (Department of Oruro). The present research was carried with the purpose of identifying forage species with tolerance to different concentrations of NaCl in the germination stage of eight native and naturalized forage species in laboratory.

Materials and methods

The research was carried from October to December 2017 and January 2018 at the Facultad de Ciencias

Agrarias y Naturales of the Universidad Técnica de Oruro (FCAN-UTO), ciudadela universitaria to the south Oruro city, with altitude 3735 m above sea level.

Seed. seeds of eight forage species that have tolerance to salinity, which three species come from commercial certified stores: alkar (Agropyron elongatum (Host) P. Beauv.), Triticale (X. Triticosecale Wittmarck) and barley (Hordeum vulgare L.). The five species are native to the highlands and were collected in the Saucarí province of the Departmento of Oruro: cola de raton (Hordeum muticum J. Presl), cebadilla nativa (Bromus catharticus Vahl.), Livi livi (Atriplex cristata), layu layu (Trifolium amabile (L.) Kunth.) and qauchi (Suaeda foliosa Moq.). Seeds of each species were cleaning of physical impurities, no pre-germination or disinfection treatment was applied.

Saline solutions. Saline solutions were prepared in 1 L of distilled water with different levels of NaCl: T1=distilled water control (without salinity), T2=2.56 g of NaCl, equivalent to 4 dS m-1 (light salinity ), T3=5.12 g of NaCl (8 dS m-1) (medium salinity), T4=7.68 g of (12 dS m-1) (strong salinity ) T5=10.54 g of NaCl (16 dS m-1) (extreme salinity)26,27. The variables evaluated were: daily germination and germination capacity. The first count was evaluated at 24 h after sowing and was evaluated daily for 30 days.

Incubation for seed germination. In 9 cm diameter Petri dishes with filter paper, 100 seeds of each species were sown, the plates were moistened with 5 mL of each NaCl saline solution and kept in an automatic incubator under 25 °C temperature, 80% relative humidity, 12 h light/darkness for 30 days28,29.

Experimental design. The completely randomized experimental design (DBCA) was used with four repetitions. The data were analyzed using the analysis of variance (ANOVA) and the Tukey test was used with P <0.0530-32.

Results

Daily germination. A. elongatum (Host) P. Beauv in all treatments started germination on the first day, the duration of the germination process was 10 days in conditions without salinity (T1), 11 days with light salinity (T2) and 12 days for solutions of moderate (T3), strong (T4) and extreme salinity (T5). The maximum number of germinated seeds per day (germination peak) occurred on day 4 for T1 and T2, and on day 5 for T3, T4 and T5, figure 1.


Figure 1
Daily germination of eight forage species at different concentrations of NaCl saline solutions

B. catharticus Vahl., germination started on day 6 for T1 and T2, on day 8 for T3 and on day 10 for T4 and T5. The duration of the germination process was 10 days for T1, T2, T4 and T5, while for T3 it was 9 days. The germination peaks occurred at 9 days for T1, at 10 days for T2, T3, T4, and at 12 days for T5.

X. Triticosecale Wittmarck., germination started on day 2 for T2, day 3 for T1, T3, T5, and day 5 for T4, 7 days was the duration of germination for T1, T3 and T4, 8 days for T2 and 10 days for T5. The germination peaks occurred on day 5 for T1 and T2, on day 6 for T3 and T4, and on day 7 for T5.

H. vulgare L. the start of germination was on day 3 for T2 and T3, on day 5 for T1, T4 and T5, while the last germinated seed was recorded after 7 days for T1, 8 days for T3, 9 days for T2 and T4, and 13 days for T5. The maximum number of germinated seeds per day was recorded at 5 for T1, T2 and T3, and on day 6 for T4 and T5.

S. foliosa Moq., germination started on day 8 for T1, day 11 for T2, day 12 for T5, day 13 for T3 and day 15 for T5, it lasted up to 20 days for T1, 17 days for T2, 16 days for T5, 15 days for T3 and 15 days for T4. Germination peaks were recorded on day 15 for T1, T2 and T3, day 20 for T4 and day 23 for T5.

H. muticum J. Presl the beginning of germination was recorded on day 7 for T1 and T2, day 8 for T3 and T4, T5 did not germinate. Germination lasted 20 days from the beginning for T1 and T2, 19 days for T3 and 18 days for T4. The germination peaks occurred on days 9 (T1), 10 (T3) and 11 (T2), T4 did not present a clear germination peak.

T. amabile (L.) Kunth., It started on day 5 (T1), day 6 (T2), and day 7 for T3 and T4, this process lasted until 21 days later for T1, 13 days for T2, and 9 days for T3 and T4. The germination peak is only perceptible in T1 at 7 days; in the rest there is no outstanding day.

A. cristata germination started on day 6 for T2, day 7 for T1, day 8 for T3, day 10 for T4, while T5 failed to germinate, the duration of this process was 22 days for T1, 23 days for T2, 21 days for T3 and 12 days for T4. The germination peaks occurred at 12 days for T1 and T3, and 16 days for T2, T4 does not have an outstanding peak

Germination capacity or accumulated germination. germination capacity of the seeds of eight forage species moistened with saline solutions, these species were grouped into three: In group 1 are the X. Triticosecale Wittmarck and H. vulgare L. in which the salinity levels have low germination affectation from 92.5% to 89.5% and from 88.75% to 76% respectively at the extreme salinity level T5, figure 2.


Figure 2
Comparison of means of the germination capacity under saline stress of eight seeds evaluated at different NaCl concentrations

In group 2 there are species whose germination are significantly affected with high levels of salinity, A. elongatum (Host) P. Beauv., Its germination capacity decreases from 47.75% to 26.25% with T5, while that B. catharticus Vahl reduces germination with T3, T4 and T5, and finally there is S. foliosa Moq., that germination is significantly affected with T2, T3, T4 and T5.

In group 3 are H. muticum J. Presl whose germination is affected with T3 and T4, as well as T. amabile (L.) Kunth. and A. cristata where the levels T2, T3 and T4 significantly reduce their germination capacity. In both species, germination is canceled under conditions of extreme salinity (T5).

Discussion

The Department of Oruro is located in the central Bolivian highlands, sub-basins endorheic territory of the Desaguadero, Poopó and Coipasa are located, which have gradually been degrading the soils by different degrees of salinization in an area estimated at 254.26 km2. Soils with extreme salinity 63 dS m-1(33). Soil salinity is one of the abiotic factors of high impact, soil degradation34, it could in future loss of productive capacity by high salt concentrations.

Several methods have been developed for the use or recovery of salinized soils (physical, biological, hydrotechnical and chemical), however, its application in large areas is not viable by to high costs. The forage species implementation is one of the best alternatives in these conditions, since they allow the extraction of salts from the soil, but also produce forage for livestock35.

The present study identified forage species with great tolerance to salinity, in phenological germination stage in laboratory, since germination and the first stages of plant growth are phonological stages most sensitive to any situation of stress, mainly the decrease in water availability caused by salinity18,34,35.

The results indicate that the germination of the seven species is affected in different degrees by the increase in NaCl concentrations, which is consistent with several studies on the impact of salts on the germination process36-38. Only X. Triticosecale Wittmarck resisted a salinity and not suffer a significant decrease in seed germination.

Previous studies indicate that plant species do not respond equally to the effects of salts17,34,39,40, the adverse effects of salinity in forage species vary according to the genetic hereditary character41-43.

Lastiri-Hernández et al.44 determined that tolerance to salinity depending on the permeability of the seed, composition of lipid structure and cytoplasmic viscosity, key factors for the preservation of the integrity of the seeds plasma membrane, as is the specific case of H. vulgare.

The effects of salinity on seed germination, several investigations indicate that salinity decreases the water potential of the soil solution, causing osmotic retention of water, decreasing the availability of water for the seed and generates toxicity ionic effects34,35,45-49 therefore, the germination does not occur by the embryo not reach the necessary turgor to break the seminal covers18.

The seeds reduction germination capacity is gradual as the salt concentrations increase, to a level that can totally inhibit this process50-52. In saline conditions the seed requires greater amounts of energy53 to absorb water a capacity that not all plant species have.

In the specific case of NaCl saline solutions, Ruiz & Terenti18 determined that they have a combined effect on the seeds: produces the osmotic effect and causes water stress in the seeds and it creates an ionic effect. By the entry and/or accumulation of ions in the seeds causes toxicity and according with Lastiri-Hernández et al.44 ionic toxicity affects the functions of the membrane and cell wall of the embryon, resulting from the reduction in the permeability of the plasma membranes, the increase in the influx of external ions and the reflux of cytosolid solutes. Another salinity effect in seeds is the delay of the start and the germination process, an aspect that was registered in seven species, except A. elongatum that did not suffer this affectation, this result also coincides with the general trend of several studies in halophytic and glycophyte plants, caused by the decrease in the water absorption capacity and the seeds speed imbibition18,44,54,55.

The speed and uniformity of seed germination is one of the success factors for the development of forage species in saline conditions, therefore the delay of the germination process reduces the species reproduction possibilities18, however, Lastiri-Hernández et al.44, the reduction of germination in salinity conditions increases their latency and dormancy state, two mechanisms that help seeds to germinate in conditions of reduced salinity, therefore, it can be considered as an adaptation to salinity and maximize the chances of survival species56-58.

The results for each species, A. elongatum significantly reduces germination in extreme salinity conditions, coinciding with the reports of Ruiz & Terenti18, Terrazas8 and Jauregui et al.59 that, in decrease of germination, mention the decrease in germination speed in close relatives of this species.

H. vulgare, it is affected by extreme salinity solution (EC 18 dS m-1), its germination is higher 76%, and similar to reports of Lastiri-Hernández et al.44 that indicate that EC levels of 18.25 and 35.3 dS m-1 reduce germination in 33.33 and 76% respectively.

S. foliosa, shown low germination percentage under normal conditions (28%), with the increase in salt concentration its germination capacity decreases significantly to 6%. These data are similar to Morón-Rios33 with 19% germination in normal conditions, however, it indicates that with extreme salinity solutions, germination it is null by presence of the perianth, impermeable and semi-hard episperm, and also determines that the retardation of the germination process in this species extends to the seventh week. In studies of other species of genus Suaeda, they also record a decrease in germination and delay in the process between 2 to 7 days compared to the control60.

The seeds of A. cristata, the increase in saline concentrations decrease germination capacity and cancellation in conditions of extreme salinity, results that are similar to the reports of Morón-Rios33.

In conclution, species can be used as forage for the use of salinized soils depending on the maximum tolerance. X. Triticosecale Wittmarck and H. vulgare have tolerance to extreme salinity and can be planted in it conditions. The species A. elongatum, B. catharticus and S. foliosa can be sown in soils with extreme salinity, however, to reach acceptable levels of germination, it is recommended to quintuple the sowing density.

Finally, the species A. cristata and T. amabile are the most sensitive to salinity and not suggested sow in extreme salinity soils.

Cited Literature

1. Supervisión técnica proyecto manejo integral de los recursos naturales cuenca Rio Lauca [Internet]. Gobierno Autónomo Departamental de Oruro-INFOSICOES. 2019 [citado 15 de mayo de 2019]. Recuperado a partir de: https://www.infosicoes.com/supervision-tecnica-proyecto-manejo-integral-de-los-recursos-naturales-cuenca-rio-lauca-lct298202.html

2. Marañón T, García LV, Troncoso A. Salinity and germination of annual Melilotus from the Guadalquivir delta (SW Spain). Plant Soil 1989;119:223-8. DOI: https://doi.org/10.1007/BF02370412

3. Khan MA. Studies on germination of Cessa cretica L. sedes. Pak J Weed Sci Res 1991;4(2):89-98.

4. Khan MA, Weber DJ. Ecophysiology of High Salinity Tolerant Plants [Internet]. Netherlands: Springer; 2006. 397 p. DOI: https://doi.org/10.1007/1-4020-4018-0

5. Bewley JD. Seed germination and reserve movilization. ESL 2001; 1. DOI: https://doi.org/10.1038/npg.els.0002047

6. Ashraf M, Foolad MR. Pre-sowing seed treatment - a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv Agron 2005;88:223-71. DOI: https://doi.org/10.1016/S0065-2113(05)88006-X

7. Schmidhalter U, Oertli JJ. Germination and seedling growth of carrots under salinity and moisture stress. Plant Soil 1991;132(1):243-51. DOI: https://doi.org/10.1007/FB00010450

8. Terrazas_Rueda JM. Efecto de tres niveles de salinidad en el crecimiento del pasto Agropiro variedad Alkar (Thinopyrum ponticum) mediante reproducción sexual y vegetativa. Apthapi 2018;4(3):1295-311.

9. Gorai M, Neffati M. Germination responses of Reaumuria vermiculata to salinity and temperature. Ann Appl Biol 2007;151(1):53-9. DOI: https://doi.org/10.1111/j.1744-7348.2007.00151.x

10. Rasheed A, Ahmed MZ, Gul B, Khan MA, Hameed A. Comparative seed germination ecology of sabkha and playa halo-phytes of Pakistan. In: Gul B, Böer B, Khan M, Clüsener Godt M, Hameed A, editors. Sabkha Ecosystems. Tasks for Vege-tation Science. Cham: Springer; 2019. DOI: https://doi.org/10.1007/978-3-030-04417-6_4

11. Fenner M, Thompson K. The ecology of seeds. Ann Bot 2006;97:151-3. DOI: https://doi.org/10.1093/aob/mcj016

12. Ajmal Khan M, Zaheer Ahmed M, Hameed A. Effect of sea salt and L-ascorbic acid on the seed germination of halophytes. J Arid Environ 2006;67(3):535-40. DOI: https://doi.org/10.1016/j.jaridenv.2006.03.001

13. Iyengar ERR, Patolia JS, Kurian T. Varietal differences in barley to salinity. Z Pflanzenphysiol 1977;84(4):355-61. DOI: https://doi.org/10.1016/S0044-328X(77)80149-9

14. Ashraf M, McNeily T, Bradshaw AD. The response of selected salt-tolerant and normal lines of four grass species to NaCl in sand culture. New Phytol 1986;104(3):453-61.DOI: https://doi.org/10.1111/j.1469-8137.1986.tb02912x

15. Hajiboland R, Bahrami Rad S, Akhani H, Poschenrieder C. Salt tolerance mechanisms in three Irano-Turanian Brassicaceae halophytes relatives of Arabidopsis thaliana. J Plant Res 2018;131(6):1029-46. DOI: https://doi.org/10.1007/s10265-018-1053-6

16. Laynez Garsaball JA, Méndez Natera JR, Mayz Figueroa J. Efecto de la salinidad y del tamaño de la semilla sobre la germinación y crecimiento de plántulas de maíz (Zea mays L.) bajo condiciones de laboratorio. TIP 2018;11(1):17-25.

17. Reyes Pérez JJ, Murillo Amador B, Nieto Garibay A, Troyo Diéguez E, Reynaldo Escobar IM, Rueda Puente EO. Germinación y características de plántulas de variedades de albahaca (Ocimum basilicum L.) sometidas a estrés salino. Rev Mex Cienc Agríc 2013;4(6):869-80. DOI: https://doi.org/10.29312/remexca.v4i6.1155

18. Ruiz M, Terenti O. Germinación de cuatro pastos bajo condiciones de estrés salino. Phyton 2012; 81(2):169-76.

19. Kusvuran A, Nazli RI, Kusvuran S. The effects of salinity on seed germination in perennial ryegrass (Lolium perenne L.) varieties. Türk Tarım Doğa Bilim Derg 2015;2(1):78-84.

20. Cheeseman JM. Mechanisms of salinity tolerance in plants. Plant Physiology. 1988;87:547-50. DOI: https://doi.org/10.1104/pp.87.3.547

21. Foolad MR, Jones RA. Parent-offspring regression estimates of heritability for salt tolerance during germination in tomato. Crop Sci 1992;32(2):439-42. DOI: https://doi.org/10.2135/cropsci1992.0011183X003200020031x

22. Saleki R, Young PG, Lefebvre DD. Mutants of arabidopsis thaliana capable of germination under saline conditions. Plant Physiol 1993;101(3):839-45. DOI: https://doi.org/10.1104/pp101.3.839

23. Yeo AR. Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 1998;49(323):915-29. DOI: https://doi.org/10.1093/jxb/49.323.915

24. Hernández JA. Salinity tolerance in plants: trends and perspectives. Int J Mol Sci 2019;20(10):2408. DOI: https://doi.org/10.3390/ijms20102408

25. Guerrier G. Influence de differentes salinités (sels de sodium et sels de chlorure) sur la germination de Raphanus sativus. Plant Soil 1981;61(3):457-69. DOI: https://doi.org/10.1007/bf02182026

26. Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelley DB, Gunningham GA, et al. Saline culture of crops: A genetic approach. Science 1980;210(4468):399-404. DOI: https://doi.org/10.1126/science.210.4468.399

27. Hanslin HM, Eggen T. Salinity tolerance during germination of seashore halophytes and salt-tolerant grass cultivars. Seed Sci Res 2005;15(01):43-50. DOI: https://doi.org/10.1079/SSR2004196

28. Ruiz Ramírez S, Valdés Oyervides A, Facio Parra F, Arce González L. Efecto de diferentes niveles de salinidad en la germinación y vigor de semillas de cinco gramíneas forrajeras. Agraria 2012;9 (1):7-13.

29. Pablo_Pérez M, Lagunes_Espinoza LC, López_Upton J, Ramos_Juárez J, Aranda_Ibáñez EM. Morfometría, germinación y composición mineral de semillas de Lupinus silvestres. Bioagro 2013;25(2):101-8.

30. León Lara JD, Ramos Torres I, Marrufo Pinedo RR, Borboa Félix J. Optimización del proceso de germinación de Salicornia bigelovii tratada con soluciones salinas. Epistemus 2014;16:29-35.

31. Easterling RG. Fundamentals of Statistical Experimental Design and Analysis. New York: John Wiley & Sons, Ltd; 2015. p. 245.

32. Barker TB, Milivojevich A. Quality by Experimental Design. New York: CRC Press, 2016. 707 p.

33. Morón Ríos E. Introducción a la biología y ecología de las halófitas del Altiplano Central de Bolivia. 2018. 180 p.

34. Terrazas_Rueda JM. Aprovechamiento del suelo salino: agricultura salina y recuperación de suelos. Apthapi 2019;5(1):1539-63.

35. Mata_Fernández I, Rodríguez_Gamiño ML, López_Blanco J, Vela_Correa G. Dinámica de la salinidad en los suelos. Revista Digital E-BIOS 2014;5(1):26-35.

36. Bilquees G, Khan MA. Effect of compatible osmotica and plant growth regulators in alleviating salinity stress on the seed germination of Allenrolfea occidentalis. Pak J Bot 2008;40(5):1957-64.

37. Mitsuo Yamashita O, Carneiro Guimarães S. Efecto de estrés salino sobre la germinación de las semillas de Conyza canadensis y Conyza bonariensis. Bioagro 2011;23(3):169-74.

38. Ramírez Suárez WM, Hernánde Olivera LA. Tolerancia a la salinidad en especies cespitosas. Past Forr 2016;39(4):235-45

39. Grieve C. Salinity-induced enhancement of horticultural crop quality. En: Pessarakli M, editor. Handbook of plants and crop stress. New York: Taylor & Francis Group; 2011. P. 1173-93. DOI: https://doi.org/10.1201/b10329-58

40. Bojórquez_Quintal E, Velarde_Buendía A, Ku_Gónzales A, Carrillo_Pech M, Ortega_Camacho D, Echevarría Machado I, et al. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. Front Plant Sci 2014;605(5):1-14. DOI: https://doi.org/10.3389/fpls.2014.00605

41. Marcar NE. Salt tolerance in the genus Lolium (ryegrass) during germination and growth. Aust J Agric Res 1987;38(2):297-307. DOI: https://doi.org/10.1071/AR9870297

42. Shannon MC, Noble CL. Variation in salt tolerance and ion accumulation among subterranean clover cultivars. Crop Sci 1995;35:798-804. DOI: https://doi.org/10.2135/cropsci1995.0011183x003500030027x

43. Rogers M, Grieve C, Shannon M. The response of lucerne (Medicago sativa L.) to sodium sulphate and chloride salinity. Plant Soil 1998;202(2):271-80. DOI: https://doi.org/10.1023/a:1004317513474

44. Lastiri Hernández MA, Álvarez Bernal D, Soria Martínez LH, Ochoa Estrada S, Cruz Cárdenas G. Efecto de la salinidad en la germinación y emergencia de siete especies forrajeras. Rev Mex Cienc Agríc 2017;8(6):1245-57.

45. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 2000;51:463-99. DOI: https://doi.org/10.1146/annurev.arplant.51.1.463

46. Zhu JK. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 2003;6(5):441-5. DOI: https://doi.org/10.1016/S1369-5266(03)00085-2

47. Ashraf M, Harris PJC. Potential biochemical indicators of salinity tolerance in plants. Plant Sci 2004;166(1):3-16. DOI: https://doi.org/10.1016/j.plantsci.2003.10.024

48. Poustini K, Siosemardeh A. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res 2004;85(2-3):125-33. DOI: https://doi.org/10.1016/S0378-4290(03)00157-6

49. Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Sci 2005;45(2):437-48. DOI: https://doi.org/10.2135/cropsci2005.0437

50. Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 2002;53:247-73. DOI: https://doi.org/10.1146/annurev.arplant.53.091401.143329

51. Bazzigalupi O, Pistorale SM, Andrés AN. Tolerancia a la salinidad durante la germinación de semillas provenientes de pobla-ciones naturalizadas de agropiro alargado (Thinopyrum ponticum). Cien Inv Agr 2008;35(3):277-85. DOI: https://doi.org/10.4067/S0718-16202008000300005

52. Salomón J, Samudio A. Efecto del estrés salino en la germinación y vigor de semillas de Panicum maximum Jacq. variedades Tanzania y Mombasa. Compend Cienc Vet 2015;5(2):23-31.DOI: https://doi.org/10.18004/compend.cienc.vet.2015.05.02.23-31

53. Rubio Casal AE, Castillo JM, Luque CJ, Figueroa ME. Influence of salinity on germination and seeds viability of two prima-ry colonizers of Mediterraneans salt pans. J Arid Environ 2003;53(2):145-54. DOI: https://doi.org/10.1006/jare.2002.1042

54. Munns R. Comparative physiology of salt and water stress. Plant Cell Environ 2002;25(2):239-50. DOI: https://doi.org/10.1046/j.0016-8025.2001.00808.x

55. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol 2008;59:651-81. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911

56. Keiffer CH, Ungar IA. The effect of extended exposure to hypersaline conditions on the germination of five inland halo-phytes species. Am J Bot 1997;84(1):104-11. DOI: https://doi.org/10.2307/2445887

57. Khan MA, Gul B, Weber D.J. Influence of salinity and temperature on the germination of Kochia scoparia. Wetl Ecol Manag 2001;9:483-9. DOI: https://doi.org/10.1023/A:1012232728565

58. Abbad A, El Hadrami A, Benchaabane A. Germination responses of the Mediterranean saltbush (Atriplex halimus L.) to NaCl treatment. J Agron 2004;3(2):111-4. DOI: https://doi.org/10.3923/ja.2004.111.114

59. Jauregui CJ, Ruiz MA, Ernst RD. Tolerancia a la salinidad en plántulas de agropiro criollo (Elymus scabrifolius) y agropiro alargado (Thinopyron ponticum). Past Forr 2017;40(1):29-36.

60. Núñez_Cuerda E. Respuestas a la salinidad en varias especies halófitas adaptadas a diferentes hábitats [tesis licenciatura]. [Jaén]: Universidad de Jaén; 2020 [citado 26 de septiembre de 2020]. Recuperado a partir de: http://tauja.ujaen.es/bitstream/10953.1/12300/1/TFG%20Elena%20Nunez%20Cuerda.pdf

Notas

Funding source: This work was carried within the project “Manejo integral de los recursos naturales cuenca Río Lauca”, co-financed by the Ministerio of Medio Ambiente and Agua (MMAyA), Gobierno Autónomo Departamental of Oruro (GADOR) y Gobierno Autónomo the Nación Originaria Uru-Chipaya (GAIOC).

_______

Conflicts of interest: The authors declare no conflicts of interest.

_______

Acknowledgments: We appreciate the support provided by the Facultad de Ciencias Agrarias y Naturales de la Universidad Técnica de Oruro, in particular Ing. Agr. Pedro Cárdenas Castillo, Professor at the Laboratorio de Fitotecnia and Ing. Agr. Ermindo Barrientos Pérez, Professor at the Semillas de Pastos Nativos y Forestales. We express our gratitude to the company CALEF SRL, executor of the project “Manejo integral de los recursos naturales cuenca Río Lauca”.

_______

Ethical aspects: This document was approved by the Dirección de Investigación Científica and Tecnológica of the Universidad Técnica de Oruro.

________

ID of article: 096/JSAB/2020

_______

Editor's Note: Journal of the Selva Andina Biosphere (JSAB) remains neutral with respect to jurisdictional claims published on maps and institutional affiliations.

Notas de autor

* Dirección de contacto: Faculty of Agricultural and Natural Sciences FANS. Technical University of Oruro TUO. Av. Dehene between Román Koslowky and León H. Loza (Ciudadela Universitaria). Tel. + 591-52 61645-52 62735. Fax. (591-2) 52 61645. Oruro, Plurinational State of Bolivia. Mobile: +591-67201310

Willy Choque-Marca E-mail: w.choque.m@gmail.com

Enlace alternativo



Buscar:
Ir a la Página
IR
Modelo de publicación sin fines de lucro para conservar la naturaleza académica y abierta de la comunicación científica
Visor de artículos científicos generados a partir de XML-JATS4R