EVALUACIÓN DE CINCO MÉTODOS PARA EL PRONÓSTICO Y EL ANÁLISIS DE TENDENCIA DE LA PRODUCCIÓN AGRÍCOLA DE PANAMÁ: UNA HERRAMIENTA PARA LAS INSTITUCIONES Y EMPRESAS DEL SECTOR

EVALUATION OF FIVE METHODS FOR FORECASTING AND ANALYSIS OF AGRICULTURAL PRODUCTION TRENDS IN PANAMA: A TOOL FOR INSTITUTIONS AND COMPANIES IN THE SECTOR

D Juan Corella Justavino Universidad de Panamá., Panamá jcorella1954@gmail.com.

D Juan H. Rusnak S.

Universidad Tecnológica de Panamá., Panamá juan.rusnak@utp.ac.pa

José R. Binns H.

Universidad de Panamá., Panamá jose.binns@up.ac.pa

D Carmen C. Rovira C.

Universidad de Panamá., Panamá carmen.rovira@up.ac.pa

Odilio Ayala

Universidad Autónoma de Chiriquí., Panamá odilio.ayala@unachi.ac.pa

Rubén D. Ríos E.

Universidad de Panamá., Panamá ruben.riose@up.ac.pa

Xóchilt Acosta

Universidad de Panamá., Panamá xochilt.acosta@up.ac.pa

Eybar E. Vargas

Universidad de Panamá., Panamá

Resumen: Como orientación una para que administradores y profesionales de las ciencias agrícolas mejoren la planificación de presupuestos y estados financieros proyectados, se analizaron cinco métodos de pronósticos y la tendencia de la regresión lineal, en una serie de tiempo, para 30 cultivos agrícolas en Panamá. Los cinco métodos de pronósticos aplicados fueron el Promedio Móvil Simple (PMS), el Promedio Móvil Ponderado (PMP), la Suavización Exponencial (SE), la Regresión lineal simple (RLS) y la Regresión Polinómica (RP) y el único método de tendencia utilizado fue el RLS. Los datos se corrieron en el software Excel. Los resultados de las estadísticas básicas (ver tabla1) mostraron que, de 30 rubros analizados en el 2019, en 16 casos la producción estuvo por debajo del promedio de la serie histórica. En la tabla 2 se observa que, de los 30 rubros pronosticados, 6 casos correspondieron al PMS, 14 casos al PMP, 9 casos a la SE y en un caso al método de la RP. En el análisis de tendencia, para después del año 2019, de los 30 casos analizados, 19 rubros mostraron tendencia al decrecimiento, 9 mostraron al incremento y dos a mantener la producción constante. Se concluye que los pronósticos para la producción de cultivos agrícolas pueden variar de un método a otro, dependiendo además de la data y del tiempo, de un alto coeficiente de determinación del modelo de regresión, de un resultado en números reales positivos y del menor error porcentual de desviación absoluta.

Notas de autor

jcorella1954@gmail.com.

eibar.vargas@up.ac.pa

Revista Investigaciones Agropecuarias

vol. 5, núm. 2, p. 16 - 27, 2023 Universidad de Panamá, Panamá ISSN-E: 2644-3856 Periodicidad: Semestral reinaldo.dearmas@up.ac.pa

Recepción: 03 Febrero 2023 Aprobación: 23 Abril 2023

URL: https://portal.amelica.org/ameli/journal/222/2225095002/

Palabras clave: coeficiente de determinación, cultivos agrícolas, Porcentaje de error promedio absoluto MAPE, promedios móviles, serie histórica, regresión polinómica.

Abstract: As an orientation for agricultural science managers and practitioners to improve budget planning and projected financial statements, five forecasting methods and the trend of linear regression, over a time series, for 30 agricultural crops in Panama were analyzed. The five forecasting methods applied were Simple Moving Average (SMA), Weighted Moving Average (WMA), Exponential Smoothing (SE), Simple Linear Regression (SLR) and Polynomial Regression (PR) and the only trend method used was SLR. The data was run in Excel software. The results of the basic statistics (see table 1) showed that, of 30 items analyzed in 2019, in 16 cases production was below the average of the historical series. Table 2 shows that, of the 30 items predicted, 6 cases corresponded to the SMA, 14 cases to the WMA, 9 cases to the SE and in one case to the PR method. In the trend analysis, for after 2019, of the 30 cases analyzed, 19 items showed a tendency to decrease, 9 showed an increase and two to were predicted to maintain constant production. It is concluded that the forecasts to produce agricultural crops may vary from one method to another, depending also on addition to the data and time, a high coefficient of determination of the regression model, a result in positive real numbers and the lowest percentage error of absolute deviation.

Keywords: coefficient of determination, agricultural crops, Average Absolute Percentage Error (MAPE), moving averages, historical series, polynomial regression.

INTRODUCCIÓN

La predicción de pronósticos y tendencias de futuras cosechas es un problema de gran relevancia que, en su mayoría, aún no ha sido resuelto por las empresas agropecuarias de Panamá. En esta investigación se enfocarán distintos tipos de pronósticos y tendencias como una referencia útil para que el administrador de empresas agropecuarias pueda tomar mejores decisiones en la planificación de presupuestos y estados financieros proyectados.

Los antecedentes y la literatura correspondiente a los pronósticos han sido ampliamente descritos por renombrados autores, tales como: Anderson et al. (2011) y Anderson et al. (2011); Alonso (2007); Ayala (2019); Torres Barrón (2011); Gallagher y Watson (1982); Gutiérrez (2013). Todos ellos describen objetivos y fórmulas correctas sobre pronósticos aplicados en distintas disciplinas. Vargas Avilés (2014) enmarca siete pasos para implementar la metodología de pronósticos: definir el problema, desarrollar un modelo, recopilar datos, desarrollar una solución, probar la solución, analizar los resultados e implementar los resultados. Renders, Stair y Hanna (2012) definen tres técnicas de pronósticos: los modelos causales (como el modelo Delphi, el Jurado de opinión ejecutiva, la composición de la fuerza de ventas y las encuestas al mercado de consumidores); los promedios móviles, las proyecciones de tendencias, la descomposición de factores, los análisis de regresión y la regresión múltiple. Monks (1996) resume 14 métodos de pronósticos: seis métodos de opinión y juicio (cualitativos), como la fuerza de venta, la opinión ejecutiva, las ventas y el gerente de línea, la analogía histórica, el método Delphi y la investigación de mercados; seis métodos de series de tiempo (cuantitativos), como el promedio simple, los promedios móviles, la proyección de la tendencia, la descomposición, el suavizamiento exponencial y el Box-Jenkins; y dos métodos asociativos cuantitativos, como la regresión y la correlación, y los econométricos.

El objetivo general de esta investigación es dotar al administrador de empresas agropecuarias de técnicas de pronósticos y tendencias para una mejor planificación de la producción en el sector agropecuario. En lo específico, plantea mostrar y seleccionar el mejor pronóstico y la mejor tendencia de la producción de rubros agrícolas para el año 2023-2024.

El análisis estadístico de series históricas, así como los métodos y técnicas científicas de pronósticos aquí utilizados con fines de presupuestos financieros y para predecir futuras cosechas hasta ahora ha sido poco utilizado en Panamá, en especial en el sector agropecuario. La hipótesis de trabajo, para la verificación de la presente investigación, sostiene que los pronósticos de producción difieren según el método utilizado y su efectividad está en función de la naturaleza de la serie histórica que se toma como base.

El alcance de este trabajo consiste en empoderar a los interesados para analizar datos e implementar pronósticos y tendencias para una mejor planificación de producción en las empresas agropecuarias de Panamá. Los beneficiarios de la información resultantes serán las instituciones y empresas públicas y privadas, así como también administradores, profesionales y estudiantes del de Panamá.

MATERIALES Y MÉTODOS

Tipo de estudio y diseño de investigación

Se trató de un análisis econométrico correlacional y explicativo, basado en una serie histórica de datos. Los datos para la investigación se obtuvieron de la hoja electrónica Excel de la Dirección Nacional de Agricultura y de la Dirección Nacional de Planificación de Ministerio de Desarrollo Agropecuario de Panamá (MIDA, 2021). La calendarización de siembra y cosecha de esos rubros se obtuvieron del Calendario de Rubros Instituto de Mercadeo Agropecuario (IMA, 2020). La descripción de los aspectos técnicos de esos cultivos está en los Catálogos de Rubros Cultivados en Panamá (IMA, 2021).

Programas computarizados y personal

Se contó con un buen equipo multidisciplinario de investigadores, así como programas informáticos y métodos cuantitativos y estadísticos como POM-QM (Weiss, 2005), SAS en línea (SAS, 2021), SPSS y Excel, entre otros.

Métodos, diseño y unidades de análisis

Según Toro, *et al.* (2010), existen muchísimos modelos para pronósticos. Renders *et al.* (2012) nos indican que el pronóstico (Yt) está en función de los componentes de la serie de tiempo a saber: Yt = T*C*S*R, dónde los componentes de las series de tiempo se interpretan como: T= Tendencia; C= Cíclico; S= Estacional; R= Aleatorio o irregular.

Para efectos de esta investigación, por límites de tiempo, fácil manejo y bajos costo de procesamiento, se seleccionaron cinco métodos de pronósticos (tres basados en modelos de promedios de series históricas y dos modelos de regresión) para predecir la producción de 30 rubros agrícolas en el año agrícola 2023-2024. A continuación, se describe brevemente la metodología utilizada para cada uno de los pronósticos:

- 1. Promedio Móvil Simple (PMS): para pronosticar el 3er año y años sucesivos se promediaron los dos años anteriores.
- 2. Promedio Móvil Ponderado (PMP): para pronosticar el 3er año y años sucesivos se promediaron los dos años reales anteriores y adicional se le dio una ponderación a cada año real anterior y donde la suma de las ponderaciones debe ser igual a uno.
- 3. Suavización Exponencial (SE): para pronosticar se puede utilizar cualquier aproximación que estime la experiencia el investigador. Para este caso, al pronosticar el 3ro año se promedió el año 1 real más el año 2 real; luego para pronosticar el año 4, de la serie y años subsiguientes se utilizó el pronóstico del año 3 real más (+) una constante de suavización (alfa) multiplicada por el año 3 real anterior menos el pronóstico del año 3 anterior. La constante alfa varía acorde a la necesidad, dando mayor peso a los años recientes. Hay que observar que en el pronóstico para PMS, PMP y SE, se realizaron a partir del tercer año y que los últimos años los pronósticos se realizaron sobre el pronóstico del año anterior.
- 4. Regresión Lineal Simple (RLS): se obtuvo la ecuación de regresión lineal simple de la serie histórica de "x" años considerados (1999-2020) y con esa ecuación de regresión lineal simple ajustada se obtuvo el pronóstico de la producción para el año 2023-2024. Las series históricas comprenden entre cinco y 14 años de análisis, dependiendo de la data de cada rubro.
- 5. Regresión Polinómica de tercer grado (RP°3): Se obtuvo la ecuación de regresión polinómica de tercer grado para la serie histórica de "x" años (1999-2020) y con esa ecuación de regresión polinómica ajustada se obtuvo el pronóstico de la producción para el año agrícola 2023-2024.

En cada uno de los cinco métodos donde se corrió la serie histórica de datos de cada rubro se obtuvo la ecuación de pronóstico, el pronóstico, el error promedio, la desviación media absoluta (MAD), el error cuadrado medio (MSE) y el error medio porcentual absoluto (MAPE) de la producción pronosticada.

Los criterios de selección del mejor pronóstico fueron: a) Un coeficiente de determinación del modelo superior a 0.70 (mayor al 70%); b) Un resultado del pronóstico en números reales positivos (ya que la producción no puede ser negativa); c) El menor MAPE de todos los pronósticos. Una vez considerado el criterio 1 y 2, entonces se consideró el criterio 3.

RESULTADOS Y DISCUSIÓN

A continuación, se presenta para su discusión los resultados de la serie histórica de datos considerados en esta investigación.

La tabla 1 muestra las estadísticas básicas de la serie histórica considerada para esta investigación y se puede observar que para el año agrícola 2019-20, de los 30 rubros analizados, en 16 casos la producción estuvo por debajo del promedio de la serie histórica.

Tabla 1. Estadísticas de 30 Cultivos Agrícolas de Panamá. (1999-2020).

X	Rubro y años de la serie histórica*	Unidad	# Años	Total (qq)	Promedio Anual	Devest	Max	Min	Producción 2019-2020*
1	Arroz mec. (2009-20)	qq	11	70,306,558	6,391,505	788,549	7,763,963	5,172,879	7,763,963
2	Maíz mec. (2009-20)	qq	11	18,891,445	1,717,404	399,125	2,148,562	1,038,114	2,019,067
3	Maíz a chuzo con tecnología (2007-20)	qq	13	3,284,914	252,686	85,777	400,571	77,923	195,243
4	Sorgo (2008-20)	qq	12	804,081	67,007	38,377	121,538	8,900	80,421
5	Poroto (2009-20)	qq	12	723,165	65,742	25,737	98,357	28,965	28,965
6	Frijol vigna (2009-20)	qq	11	441,996	40,181	19,113	68,588	12,580	49,299
7	Guandú (2009-20)	qq	11	52,158	4,742	2,034	8,601	2,215	6,350
8	Yuca (2009-20)	qq	11	4,593,195	417,563	126,570	574,750	194,141	574,750
9	Ñame (2009-20)	qq	11	3,610,597	328,236	106,040	519,564	166,074	343,210
10	Ñampi (2009-20)	qq	11	330,025	30,002	10,650	50,724	15,019	42,542
11	Papa (2006-20)	qq	14	7,709,833	550,702	65,902	687,390	463,818	513,715
12	Cebolla (2009-20)	qq	11	4,036,588	366,963	88,986	541,040	250,905	313,669
13	Tomate ind. (2009-20)	qq	11	1,639,959	149,087	36,578	190,669	63,800	148,076
14	Zapallo (export. mas local), (2009-20)	qq	11	1,596,685	145,153	46,179	232,935	51,747	128,786

15 ¹	Melón (export mas local) (2009-20)	qq	11	2,259,121	205,375	257,887	967,364	49,328	135,475
16	Sandía (2009-20)	qq	11	7,567,554	687,959	221,374	1,210,269	406,685	584,036
17	Piña (2015-20)	qq	5	12,136,156	2,427,231	582,137	3,146,334	1,936,802	2,115,103
18]	Plátano (2015-20)	qq	5	18,735,955	3,747,191	409,013	4,213,010	3,206,958	4,213,010
19	Papaya (2015-20)	qq	5	1,593,157	318,631	89,275	469,647	239,188	281,550
20 1	Naranja (2009-20)	qq	5	24,694,111	4,938,822	246,729	5,128,530	4,541,030	5,060,581
21	Café (2015-20)	qq	5	951,182	190,237	15,176	205,608	166,936	205,608
22	Palma aceite (2015-20)		5	23,137,870	4,627,574	1,247,011	5,558,332	2,754,432	5,558,332
23	Caña azúcar (2015-20)	Ton	5	233,164,050	46,632,810	01,698,016	48,896,643	44,921,778	48,896,643
24	Pimentón (2015-20)	qq	5	581,835	116,367	70,449	219,540	48,179	156,910
25	Calabacín (1999-12)**	qq	8	2,004,781	250,598	182,066	466,876	1,148	1,148
26	Tomate mesa (2015-20)	qq	5	1,023,719	204,744	37,841	267,905	170,741	188,612
27	Zanahoria Ch (2015-20)	qq	5	77,829	15,566	17,948	35,937	2,150	2,150
28	Lechuga Ch (2015-20)	qq	5	173,124	34,625	21,145	64,300	9,900	9,900
29	Apio Ch (2015-2020)	qq	5	100,095	20,019	22,844	48,300	1,200	1,200
30	Repollo Ch (2015-20)	qq	5	165,723	33,145	30,781	78,790	2,520	2,520

Observación: Las casillas en gris indican que la producción del último año considerado estuvo por debajo del promedio histórico de la serie. Fuente: Propia, basada en los análisis de datos Dirección Nacional de planificación (MIDA, 2021). Cada quintal (qq) equivale a 45.3592 kilogramos.

En la tabla 2 se muestran cinco tipos de pronósticos, y la tendencia de regresión lineal de la data, utilizados en esta investigación, para predecir la producción de 30 rubros agrícolas, para el año agrícola 2023-2024 en Panamá.

Tabla 2. Pronósticos R2 y MAPE para 30 rubros agrícolas en Panamá.

^{*} Último año considerado para el análisis de datos

^{**} Los datos del calabacín provienen de años no consecutivos.

ш	Rubros y años	Unidad	#		nun	rc	nir	Tendencia	RP3
	comprendidos	OHIGAG	Años					RLS **	KF-3
	Arroz mecanizado (2009- 2020) (en cáscara húmedo)	gg	11	7,405,844	7,348,808	7,040,439	7,276,865	+	14,836,080
	R2						40.80 %		62.609
_	MAPE			9.50%	8.60%	9.70%	10.80%		8.309
2	Maíz mecanizado (2009-2020) R2	gg	11	1,930,353	1,916,506	1,863,573	1,761,640 17,80%	++	4,818,369 31,809
	MAPE			27.90 %	26.10%	24.00%	26.60 %		17.609
3	MAIZ A CHUZO CON TECNOLOGIA (2007-2020)	gg	13	254,245	263,511	256,235	286,604		336,92
	R2						2.40%		33.109
	MAPE			30.20 %	30.50 %	23.50%	37.30 %		25.109
4	SORGO (2008-2020)	gg	12	51,031	46,295	43,554	9,113		412,56
	R2						32.80 %		60.70
5	MAPE			91.40%	83.10%	118.80%	84,00%		47.10
3	POROTO (2008-2020)	99	12	30,478	30,726	42,996	16,102	-	-188,66
	R2 MAPE			41.70%	36.10%	47.80%	40.90% 27.90%		62,40° 34,10°
6	FRUOL VIGNA (2009-2020)	gg	11	40,482	39,170	40,955	42,065	+ .	34.10
		33		70,702	33,110	40,000	•		37,64
	R2				0.400.00	E4 2001	0.10%		10.30
7	MAPE		44	6120%	64,00%	51.90%	54.90%		51.70
-	GUANDÚ (2009-2020) R2	gg	11	6,420	6,427	5,952	8,451 4520%	++	7,85 48,90°
	MAPE			29.30%	30.00%	25,30%	23.40%		22.90
3	YUCA (2009-2020)	gg	11	407.908	381,588	386,292	315,352		1,544,59
	F2	99	"	407 200	301,000	300,232	890%	•	30.70
	MAPE			40.80%	40.50%	36,90%	27.20%		24.70
9	ÑAME (2009-2020)	gg	11	269,298	257,707	265,275	163,869		1,523,62
	R2	3.5			201,101		32,60%		64.40
	MAPE			32.70%	31.40%	32.10%	24.60%		18.004
10	ÑAMP1 (2009-2020)	gg	11	40,467	40,168	36,403	43,146	++	103,87
				0.4.4007	27.50%	26.00%	20.30%		31.50
				24.40%	27.50%	26.00%	31.40%		27.40
11	PAPA(2006-2020)	gg	14	552,801	558,913	554,501	548,650	-	486,67
	R2			42.4004	40.00%	40.006	0.00%		11.501
	MAPE		44	13.10%	13.20%	19.60%	9.80%		9.30
12	CEBOLLA (2009-2020) R2	gg	11	307,608	306,739	312,086	181,168 59.20%		610,23 69,70°
	IV.						332070		09.70
	MAPE			15.70%	16.60%	17.90%	1320%		10.90

	SERIE HISTÓRIC	CA		Métodos de pronósticos, R2 y MAPE para el año 2023-2024*						
#	Rubros y años comprendidos	Unidad	# Años	PM	РМР	SE	RLS	Tendencia RLS **	RP3	
13	TOMATE INDUSTRIAL (2009- 2020)	gg	11	142,811	141,938	138,559	99,186	-	348,768	
	R2						25.30%		44.10%	
	MAPE			33.70 %	32.30 %	31.20%	20.90%		16.40%	
14	ZAPALLO (EXPORT.MAS LOCAL), (2009-2020)	aa	11	140,892	142,860	139,813	89,414	-	-22,883	
	R2						19.80 %		75.10 %	
	MAPE			38.30 %	36.10%	42.00 %	30.50 %		17.40%	
15	MELÓN (LOCAL Y EXPORTACION),(2009-2020)	gg	11	127,686	126,429	124,760	-187,772	-	-1,779,905	
	R2						31.60 %	\$ \$ 4 - 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	83.40 %	
	MAPE			61.50 %	52.80%	121.90%	102.10%		301.80 %	
16	SANDIA (2009-2020)	gg	11	613,343	617,760	610,634	343,440		-788,233	
10	R2	3.3		•	,		32.90%		63.70%	
	MAPE			31.60%	29.40%	29.60%	22.80%		73.70%	
17	PIÑA (2015-2020)	gg	5	2,038,575	2,026,263	2,276,816	407,478	-	30,087,821	
	R2	•••					61.20 %		85.10 %	
	MAPE			31.50%	27.90 %	33.40 %	14.90%		11.50%	
18	PLÁTA NO (2015-2020) R2	gg	5	4,077,994	4,056,322	3,863,525	5,264,652 94.60 %	+	4,466,769 96,30%	
	MAPE			9.50 %	820 %	12.10%	1.90%		5.40%	
19	PAPAYA(2015-2020) R2	gg	5	286,489	287,359	306,623	407,478 61.20 %	-	30,087,821 85.10 %	
	MAPE			5.90%	4.60%	14.60%	593.20%		759.50 %	
20	NARANJA (2009-2020) R2	gg	5	4,874,243	4,845,604	4,899,919	4,856,162 61.20 %	-	29,938,683 85.10 %	
	MAPE			6.70%	7.20%	6.10%	4.00%		21.60%	
21	CAFÉ (2015-2020) R2	gg	5	192,878	190,806	190,564	194,768 0.60%	+ -	1,081,157 71,00 %	
	MAPE			11.10%	11.90%	9.40%	6.40%		3.40%	
22	PALMA ACEITERA (2015- 2020) R2	gg	5	5,490,239	5 4 79 5 58	4,946,910	9,368,283	++	-2,579,766	
	MAPE			18.00%	44700/	05 40 P	80.50% 45.00%		96.30% 4.20%	
23	N /	Топ	5	48,107,161	14,70% 47,979,762	25.40 % 47,142,215	15,90 % 49,000,000	++	430 % 48,978,014	
	R2						9420 %		96 20 %	
	MAPE			3.60 %	3.30%	4.30 %	7.80 %		12.40%	
24	P MENT ÓN (2015-2020) R2	gg	5	123,964	119,036	116,240	188,734 7,30 %	+	1,994,392 17.10 %	

	SERIE HISTÓRIC	CA		Métodos	de pronóstio	cos, R2 y MAI	PE para el	año 2023-	2024*
#	Rubros y años comprendidos	Unidad	# Años	РМ	РМР	SE	RLS	Tendencia RLS #	RP3
	MAPE			9420%	122.10%	94.50 %	55,30%		56 20 %
25	CALABACIN (1999-2012)	gg	8	28,687	33,180	124,044	-161,625		1,221,777
	R2						54.70 %	Tendencia RLS **	94.60%
	MAPE			1090.30%	942.20%	8179.30%	673.60 %		105.10%
26	T0MATEMESA(2015-2020)	gg	5	181,752	180,687	195,597	86,569	-	430,047.05
	R2						67.70 %		99.10%
	MAPE			16.20%	13,80%	20.00 %	920%		1.509
27	ZANAH O RIA EN CHIRIQUÍ (2015-2020)	44	5	18,502	21,121	17,646	34,401	+	1,233,964,00
	R2						7.70%		94.60%
	MAPE			558.00 %	547.00 %	383.40%	330.30%		49.80%
28	LECHUGA EN CHIRIQUÍ (2015-2020)	44	5	22,911	24,948	31,138	-13,026	-	152,866.30
	R2						35.30 %		46 20 9
	MAPE			124.60%	155.40%	157.80%	5420%		44.30%
29	APIO EN CHIRIQUI (2015-	66	5	2,366	2,561	13,431	-59,823		540,337.70
	2020) R2			-1			84.80%		95 20 9
	MAPE			579.80%	462.50%	1028.90%	208 20%		83.30%
30	REPOLLO EN CHIRIQUÍ (2015-2020)	थ्य	5	9,809	10,977	24,811	-78,079		-104,966.00
	R2						90.70%		97.80 9
	MAPE			316.10%	289.60%	553.10%	73.70%		23.10%

Observación: Cifras en negrita indican pronóstico sugerido dado el menor MAPE y/0 un pronóstico real positivo con un R2 mayor al 70% para la determinación del modelo en la ecuación obtenida de la data.

Fuente: propia

En la tabla 2 se observan los resultados de cinco tipos de pronósticos considerados para cada uno de los 30 rubros analizados por la variable de producción en función de los años. A fin de seleccionar el mejor método de pronóstico, se procedió en base a tres criterios técnicos:

a) un coeficiente de determinación (R2) mayor a 0.70, a fin de que la ecuación de regresión para modelar los resultados tuviese un alto porcentaje de predicción; b) el menor MAPE probable de los cinco tipos de pronósticos obtenidos en la corrida de datos de cada rubro; c) un resultado en números reales positivos del pronóstico en sí, tomado en consideración que la producción no puede ser negativa. Acorde a lo anterior, los 30 rubros se agruparon según el tipo de pronóstico seleccionado, tal como sigue:

PMS (6 rubros): ñampí, papa, cebolla, piña, pimentón y lechuga en Chiriquí.

PMP (14 rubros): arroz mecanizado, sorgo, poroto, ñame, zapallo, melón, sandía, papaya, palma aceitera, caña de azúcar, calabacín, tomate de mesa, apio en Chiriquí y repollo en Chiriquí.

SE (9 rubros): maíz mecanizado, maíz a chuzo con tecnología, frijol vigna, guandú, yuca, tomate industrial, naranja, café y zanahoria.

RLS (0 rubros).

RP°3 (1 rubro): plátano.

Para analizar la tendencia en términos de crecimiento o decrecimiento de la variable producción del rubro, después del año 2019, se consideró la ecuación de regresión lineal de la serie de datos considerada.

^{*} Pronósticos: PM= Promedio Móvil; PMP=Promedio móvil ponderado; SE= Suavización Exponencial; RLS=Regresión Lineal simple; RP= Regresión Polinómica de 3er °

^{**} Tendencia: ++= rápido crecimiento, += crecimiento moderado, --= rápido decrecimiento, -= decrecimiento moderado, -o+= producción constante.

- De los 30 rubros considerados, 19 mostraron que la producción en Panamá, después del año 2019, tenía tendencia a decrecer en los años subsiguientes; entre ellos: maíz a chuzo, sorgo, poroto, yuca, ñame, papa, cebolla, tomate industrial, zapallo, melón, sandía, piña, papaya, naranja, calabacín, tomate de mesa, lechuga en Chiriquí, apio en Chiriquí y repollo en Chiriquí.
- DE los 30 rubros considerados, sólo 19 de ellos mostraron una tendencia al alza en la producción en Panamá después del año 2019. Estos rubros son: arroz mecanizado, maíz mecanizado, guandú, ñampí, plátano, palma aceitera, caña de azúcar, pimentón y zanahoria en Chiriquí.
- De los 30 rubros considerados, dos de ellos mostraron que la producción en Panamá, después del año 2019, tenía tendencia a ser constante (sostenible) en los años subsiguientes; esos rubros son: el frijol vigna y el café.
- El MAPE, de un total de 30 casos, fue inferior al 67% en 23 casos, estuvo entre 68% y 100% en dos casos, y fue superior al 100% en 5 casos. El mejor coeficiente de determinación (R2) siempre lo obtuvo la función de RP°3; de los 30 casos, en 12 el R2 fue superior al 75%, en 8 estuvo entre 51 y 75%, en 7 entre 26 y 50% y en tres menor al 25%.

CONCLUSIONES

De la presente investigación se concluye lo siguiente:

- Los resultados de pronósticos para predecir la producción de cultivos agrícolas pueden variar de un método a otro, dependiendo del alto coeficiente de determinación (R2) del modelo de regresión, de un resultado de pronóstico en números reales positivos y, finalmente, del menor error porcentual de desviación absoluta (MAPE).
- La selección de un pronóstico entre varias alternativas es una opción a considerar para realizar mejores presupuestos y predicciones sobre la cosecha futura.
- Las tendencias y el coeficiente de determinación (R2) del análisis estadístico de las series históricas dependen, de la distribución de los datos.
- En general, para el análisis de datos, el menor porcentaje de error medio absoluto (MAPE) y un alto coeficiente de determinación (R2) son de gran ayuda para seleccionar el mejor pronóstico.
- A menor período de tiempo, menor riesgo e incertidumbre en la predicción de los pronósticos. Los pronósticos de producción dependen de múltiples factores, no solo de la producción y del tiempo.
- El conocimiento y aplicación de los métodos y técnicas de pronóstico constituyen una poderosa herramienta para que el administrador de empresas agropecuarias pueda disminuir riesgos e incertidumbre en la planificación de presupuestos de producción y los estados financieros proyectados.

AGRADECIMIENTOS

El Grupo de Investigación Tecnologías y Métodos Cuantitativos Aplicados a la Agricultura (TECMECAP) agradece a cada uno de sus miembros por su colaboración en esta investigación. Asimismo, agradece al Dr. Luis Wong de la Vicerrectoría de Investigación y Postgrado de la Universidad de Panamá por sus útiles comentarios. Agradece, además, a las instituciones del sector agropecuario, a los productores, a los profesionales y estudiantes del agro por su interés en la publicación de este trabajo.

REFERENCIAS

- Anderson D. R; Sweeney D. J.; Williams R., Thomas A.; Jeffrey D; Kipp M. (2011). Métodos cuantitativos para los negocios; 11a. ed. Traducido del libro: Quantitative Methods for Business, 11a. Ed. Publicado en inglés por South-Western Cengage Learning; ISBN 13: 978-0-324-65181-2; ISBN 10: 0-324-65181-3
- Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., & Martin, K. (2011). Capítulo 6: Elaboración de Pronósticos. https: Anderson D. R, Métodos Cuantitativos para los Negocios (11 ed., págs. 182-216). México DF, México: Cengage Learning. Métodos cuantitativos para los negocios (utn.edu.ar)
- Alonso, A. M. (2007). Introducción al Análisis de Series Temporales. https://halweb.uc3m.es/esp/Personal/personas/amalonso/esp/seriestemporals.pdf
- Ayala, C. E. (2019). Breve Historia de la Econometría. https://www.timetoast.com/timelines/breve-historia-de-la-econometria
- Gallagher, C. A., & Watson, H. J. (1982). Pronóstico del Futuro. Método Cuantitativo para la Toma de Decisiones en Administración (M. G. Osuna, Trad., págs. 114-127). Juárez, México: McGRAW-HILL. Gallagher Charles A Métodos Cuantitativos Para La Toma De Decisiones En [PDF Document] (vdocument.in)
- Gutiérrez, A. F. (2013). Manual de Pronósticos para la Toma de Decisiones. http://prod77ms.itesm.mx/podcast/EDTM/P007.pdf
- IMA. (2020). Calendario de Rubros. https://web.ima.gob.pa/wp-content/uploads/2020/06/calendario-de-rubros.pdf
- IMA. (2021). Catálogo de Rubros Cultivados en Panamá. https://web.ima.gob.pa/wp-content/uploads/2021/04/CATALOGO-RUBROS-2021 28 04.pdf
- MIDA. (2021). Dirección Nacional de Planificación. seriehistorica1990-2020.xls (live.com). Resumen Mensual de los Programas (mida.gob.pa)
- Monks, J.G. (1996). Administración de Operaciones. MCGraw-Hill. México pág: 162-187.
- Renders, B., Stair, R.M., Hanna, M.E. (2012). Métodos Cuantitativos para los Negocios. Undécima edición. Pearson Education, México, 2012.
- SAS Institute, (2021). https://support.sas.com/en/software/ondemand-for-academics-support.html
- Toro, P., García, A., Aguilar, C., Acero, R., Perea, J., Vera, R. (2010). Modelos Econométricos para el Desarrollo de Funciones de Producción. Documentos de trabajo: producción animal y gestión. ISSN: 1698-4226 DT 13, Vol. 1/2010 1. Departamento de producción animal; Universidad de Córdoba, España. Microsoft Word Modelos2[1].doc (uco.es)

- Torres Barrón, M. D. (2011). Pronósticos, una Herramienta Clave para la Planeación de las Empresas. https://www.itson.mx/publicaciones/pacioli/Documents/no71/47a.-_pronosticos%2C_una_herramienta_clave_para_la_planeacion_de_las_empresas.pdf
- Vargas Avilés, J. R. (2014). Prácticas de IO con POM-QM. https://jrvargas.files.wordpress.com/2008/08/practicas-de-io-con-pom-qm2.pdf
- Weiss, H. J. (2005). Forecasting (Pronósticos). POM QM for Windows version3 (H. E. Villaverde, Trad., 3 ed., págs. 97-112). Lima, Perú: Pearson Education. Manual del POM en castellano by Angel Agüero Issuu
- Weiss, H. J. (2021). POM-QM for Windows including POM for Windows and QM for Windows Versions 5, 4 and 3 of and for Version 4 of Excel OM/QM for Windows/Mac and 3 and 2 of Excel OM/QM.

Disponible en:

https://portal.amelica.org/ameli/ameli/journal/ 222/2225095002/2225095002.pdf

Cómo citar el artículo

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Modelo de publicación sin fines de lucro para conservar la naturaleza académica y abierta de la comunicación científica Juan Corella Justavino, Juan H. Rusnak S., José R. Binns H., Carmen C. Rovira C., Odilio Ayala, Rubén D. Ríos E., Xóchilt Acosta, Eybar E. Vargas

EVALUACIÓN DE CINCO MÉTODOS PARA EL PRONÓSTICO Y EL ANÁLISIS DE TENDENCIA DE LA PRODUCCIÓN AGRÍCOLA DE PANAMÁ: UNA HERRAMIENTA PARA LAS INSTITUCIONES Y EMPRESAS DEL SECTOR

EVALUATION OF FIVE METHODS FOR FORECASTING AND ANALYSIS OF AGRICULTURAL PRODUCTION TRENDS IN PANAMA: A TOOL FOR INSTITUTIONS AND COMPANIES IN THE SECTOR

Revista Investigaciones Agropecuarias vol. 5, núm. 2, p. 16 - 27, 2023 Universidad de Panamá, Panamá reinaldo.dearmas@up.ac.pa

ISSN-E: 2644-3856