ARTÍCULOS DE INVESTIGACIÓN
Lyophilized hydroalcoholic extract of Passiflora edulis and Zea mays L, as potential arterial hypotension and hypocholesterolemia in hypertensive Mus musculus induced hypertension
Extracto hidroalcohólico liofilizado de Passiflora edulis y Zea mays L, como potencial hipotensor arterial e hipocolesterolemia en Mus musculus hipertensos inducidos
Journal of the Selva Andina Animal Science
Selva Andina Research Society, Bolivia
ISSN: 2311-3766
ISSN-e: 2311-2581
Periodicity: Bianual
vol. 10, no. 1, 2023
Received: 01 December 2022
Corrected: 01 February 2023
Accepted: 01 March 2023
Published: 01 April 2023
Abstract: The leaves of Zea mays L and Passiflora edulis have multipurpose for conventional medicine for their bioactive compounds, however, their use in animal models lacks demonstration and biomedical validation, hence the objective was to evaluate the effect of lyophilized extract of P. edulis Sims and Z. mays L as a potential arterial hypotensive and induce hypocholesterolemia in hypertensive Swiss albino mice. Forty-eight 8-week-old Swiss albino mice were used by dividing into 4 groups: G1- passion fruit (50 mg [n= 4], 100 mg [n= 4], and 200 mg [n= 4]), G2-purple corn (50 mg [n= 4], 100 mg [n= 4], and 200 mg [n= 4]), and G3-controls: negative control (distilled water [n= 12]), G4-positive control (N-nitro-L-arginine methyl ether (L-NAME) [n= 12]). Mice were fasted to assess systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), glucose and cholesterol at baseline and post induction with L-NAME by indirect method. At 4 weeks of study the animals of G1-passion fruit and G2-purple corn showed significant antihypertensive and hypocholesterolemia effect (p<0.05) resulting the concentration 200 mg as optimal reducer and stabilizer of SBP, DBP, MAP, glucose and cholesterol. In conclusion, the lyophilized extract of P. edulis (passion fruit) and Z. mays L (purple corn) leaves at 200 mg concentration showed excellent antihypertensive and hypocholesterolemia effects in hypertensive Swiss albino mice.
Keywords: Antihypertensive, cholesterol, glucose, passion fruit, purple corn, mice.
Resumen: Las hojas del Zea mays L y Passiflora edulis tienen multipropósito para la medicina convencional por sus compuestos bioactivos, sin embargo, su uso en modelos animales carece de demostración y validación biomédica, de ahí el objetivo fue evaluar el efecto del extracto liofilizado de P. edulis Sims y Z. mays L como potencial hipotensor arterial e inducir la hipocolesterolemia en ratones albino suizo hipertensos. Se utilizaron 48 ratones albino suizos de 8 semanas dividiéndose en 4 grupos: G1- maracuyá (50 mg [n= 4], 100 mg [n= 4] y 200 mg [n= 4]), G2- maíz morado (50 mg [n= 4], 100 mg [n= 4] y 200 mg [n= 4]) y G3-controles: control negativo (agua destilada [n= 12]), G4-control positivo (N-nitro-L-arginina metíl éter (L-NAME) [n= 12]). Los ratones fueron sometidos en ayunas para evaluar la presión arterial sistólica (PAS), presión arterial diastólica (PAD), presión arterial media (PAM), glucosa y colesterol en estado basal y post inducción con L-NAME mediante método indirecto. A 4 semanas de estudio los animales del G1-maracuyá y G2-maíz morado mostraron efecto antihipertensivo e hipocolesterolemia significativo (p<0.05) resultando la concentración 200 mg como óptimo reductor y estabilizador de PAS, PAD, PAM, glucosa y colesterol. En conclusión, el extracto liofilizado de hojas de P. edulis (maracuyá) y Z. mays L (maíz morado) a 200 mg de concentración demostraron ser excelentes antihipertensivos e hipocolesterolemia en ratones albino suizo hipertensos.
Palabras clave: Antihipertensivo, colesterol, glucosa, maracuyá, maíz morado, ratones.
Introduction
Arterial hypertension (AHT) is a very prevalent disease in public health (45 % in the elderly)1,2, however, in companion and production animals it is usually similar, to acute myocardial infarction, heart failure3, and is associated as a risk factor in pathologies of renal failure4, atrial fibrillation, diabetes mellitus and nephropathies5.
In the scientific literature, AHT is a complex pathology, and its therapeutic treatment is not effective5,6, which additionally causes an increase in production costs in animal husbandry, as well as being unnoticed by breeders, despite its clinical and veterinary pathological importance7.
Beta-blockers, nitrates, ACE inhibitors and ARA II are commonly used in the treatment of AHT, however, they cause various adverse effects, and the cost of treatment limits the patient's ability to continue with therapy, with the possibility of resulting in precursors of multidrug resistance5,8, which is why most drugs are not designed for the veterinary clinic9,10.
The practice of complementary medicine is recommended by the World Organization for Animal Health (OIE) and the World Health Organization (WHO) for its various properties11,12. Therefore, the use of medicinal plants (MP) would be a therapeutic alternative for patients with hypertensive pathologies13-15, in addition to the scarce biomedical and veterinary studies, despite the fact that the world and Latin American countries such as Peru have a great biodiversity of MPs that have economic and social benefits9,16.
It has been described that Z. mays L and P. edulis leaves reduce cholesterol and blood pressure11, stabilize and protect arterial capillarity17,18, reduce LDL, increase HDL, reduce obesity and insomnia19,20, due to their bioactive principles such as antioxidants, flavonoids and luteolin in their leaves and flowers21.
It has been reported that the ethanolic extract of P. edulis Sims and Z. mays exhibited antihypertensive activity in laboratory animals, however, there are no reports that reported the concentration and time of action as antihypertensive and hypocholesterolemic stabilizers of these plant species. Therefore, the aim of the study was to evaluate the effect of freeze-dried extract of P. edulis and Z. mays L as a potential arterial hypotensive and hypocholesterolemic agent in hypertensive Swiss albino mice, which could contribute as an effective immunomodulatory and chemotherapeutic antihypertensive alternative in animal models.
Materials and methods
Scope of the study. The study was carried out at the Central Research Laboratory (LCI), Animal Health Area, where freeze-dried extracts of P. edulis Sims [passion fruit] leaves (MARA) and Z. mays L [purple maize] (MA) and the experimental model of Swiss albino mice in the minibiotherium of the Multidisciplinary Scientific Research Centre (CICMI)-National University of Huancavelica (UNH), located at 3860 m above sea level at temperatures ranging from 8.5 to 16º C.
Acquisition and adaptation of mice. For the study, 48 Swiss albino mice (Mus musculus), males, 2 months old, with an average weight of 28±3 g, were acquired from the Biotherium of the Vice-rectorate of Research of the Universidad Peruana Cayetano Heredia-Peru (certificates). The animals were installed and kept in the process of adaptation for 25 days in reference to ethical regulations for handling laboratory animals22,23 in the CICMI mini-biotherium, with balanced rations and water ad libitum, maintained at a constant temperature of 22° C with a light/dark cycle of 12/12 h, supervised by the Ethics Committee (recognized by Resolution N° 1259-2021-CU-UNH) from the beginning to the end of the study, validated by means of a certificate.
Collection of plant material. MARA leaves were collected at the flowering stage from Pichanaqui-Junin Peru, and MA from Acoria District, Huancavelica - Peru in January 2021, after an authorization letter from the owner of the crop, collecting 10 kg of fresh leaves from both plants in manila envelopes, labeled and packed in technopor boxes and transferred to the Laboratory of Animal Health-UNH Peru.
Leaves from both plants were selected, and dehydrated (8 kg) for 18 days at room temperature in a ventilated shaded room until brittle to the touch24. The leaves were manually pulverized (1.0 cm) in diameter using a domestic mill (Corona, SKU:25113-001. Colombia) and sieved (600 g) using an Analytical Sieve Shaker (As 400 Control. Retsch. Germany) and packed in 3 amber jars (200 g) and stored at room temperature under shade for subsequent preparation of the lyophilized ethanolic extract25,26.
Taxonomic study. Four complete seedlings of MARA and MA were selected and herborized according to the conventional method26 and sent to the Herbarium - Museum of Natural History (MHN), Universidad Nacional Mayor San Marcos-Peru, for taxonomic identification.
Preparation of freeze-dried extracts. The pulverized leaves of both plants were macerated in hydroalcoholic solution (ethanol 97 %) as an initial solution (2:1:0.8) and kept in an agitation process with Orbitral Shaker (Labnique, 52150000)/1 h at 180 rpm for 8 days, then the extracts were dissolved with ethanol 70°, ultra-pure water at a ratio: 2:2:1:1.8, put in agitation for 5 days and purified through a quick filter (pores of 4. 7-4.6 µm)21. Prior to this process, the saturation point and apparent density of each plant species were determined using the mathematical formula: degree of alcohol in solution: axb=cxd (a: alcohol solution, b: degree of alcohol, c: solution, d: the new degree of alcohol), sample density: P= m v-1 in order to obtain the concentrations of solute and solvent to be tested.
The ethanolic solvents used were removed through an automated rotary evaporator (Büchi Rotavapor®, R-300) /4 h at 60°C) with 100 mmHg vacuum pressure, amber at 4° C27,12 and by the boiling-cooling method, which consisted in subjecting the extracts to boiling in a water bath at 45°C/8 h under directed ventilation and cooling at 10°C/24 h in falcon tubes covered with aluminium foil and stabilized at room temperature/12 h continuously28.
Finally, the MARA and MA extract obtained were centrifuged at 5000 rpm/10 min/3 times (Topscien, NextSpin-P1524. China), from which they were formulated for testing at concentrations of 50, 100, and 200 mg.
The extracts obtained from each plant species were hermetically packed in amber bottles and stored at 10°C/90 days’ maximum in order not to alter their bioactive principles27.
Measurement of antihypertensive activity. The 48 mice were registered according to study group and distributed in the CICMI minibiotherium in 4 groups: G1-MARA (50 mg [n= 4], 100 mg [n= 4] and 200 mg [n= 4]), G2-MA (50 mg [n= 4], 100 mg [n= 4] and 200 mg [n= 4]) and G3-PC positive control (L-NAME [n= 12]), G4-PC negative control (distilled water [n= 12]).
Study groups | Dose mg | N 48 | Basal (mmHg) | Post induction (mmHg) | ||||
PAS | PAD | PAM | PAS | PAD | PAM | |||
G1-MARA | 50 | 4 | 119.0±1.8 | 77.2±1.9 | 136.6±1.7 | 126.5±4.7 | 77.2±0.5 | 140.5±2.6 |
100 | 4 | 126.0±0.2 | 78.5±0.8 | 141.5±0.1 | 128.0±3.1 | 76.0±4.8 | 137.0±4.6 | |
200 | 4 | 118.0±1.7 | 74.6±0.7 | 139.6±1.5 | 123.0±5.5 | 74.0±2.6 | 135.5±5.2 | |
G2-MA | 50 | 4 | 117.7±0.5 | 79.0±1.6 | 137.8±1.6 | 119.7±5.1 | 76.7±5.5 | 136.6±4.1 |
100 | 4 | 123.7±1.7 | 78.2±0.9 | 140.1±0.8 | 122.7±5.3 | 77.5±6.1 | 138.8±4.0 | |
200 | 4 | 123.2±1.5 | 74.7±1.3 | 136.3±1.0 | 126.0±2.0 | 77.0±5.2 | 140.0±5.5 | |
G3-CP | 50 | 4 | 125.0±1.6 | 81.2±1.2 | 143.7±0.4 | 127.5±4.3 | 80.5±4.3 | 144.2±4.2 |
100 | 4 | 125.2±0.9 | 82.5±0.5 | 145.1±0.8 | 128.0±2.8 | 81.0±1.4 | 145.0±3.5 | |
200 | 4 | 126.7±0.7 | 81.2±1.0 | 144.6±1.1 | 128.2±3.9 | 80.7±4.5 | 144.8±1.3 | |
G3-CN | 50 | 4 | 120.2±1.1 | 76.0±0.2 | 136.1±1.8 | 126.5±5.0 | 76.5±5.6 | 139.7±5.8 |
100 | 4 | 123.7±0.9 | 75.2±0.9 | 137.1±1.1 | 126.5±2.7 | 76.7±0.9 | 140.0±0.7 | |
200 | 4 | 123.2±0.9 | 76.0±1.8 | 137.6±1.4 | 127.2±3.9 | 76.5±2.3 | 140.1±2.7 |
Study groups | Dosis mg | N 48 | Basal | Post induction - L-NAME | ||
Glucose | Cholesterol | Glucose | Cholesterol | |||
G1-MARA | 50 | 4 | 102.0±1.6 | 183.0±5.4 | 139.7±2.9 | 196.0±4.8 |
100 | 4 | 106.0±1.3 | 183.2±5.9 | 132.0±1.7 | 196.7±1.2 | |
200 | 4 | 76.6±7.5 | 165.3±2.1 | 139.3±4.7 | 212.3±4.9 | |
G2-MA | 50 | 4 | 80.2±12.6 | 180.0±1.8 | 94.7±3.4 | 194.0±3.9 |
100 | 4 | 99.0±2.9 | 181.0±2.5 | 95.0±3.1 | 206.2±7.5 | |
200 | 4 | 96.5±8.8 | 183.2±4.7 | 98.5± 1.5 | 206.5±1.3 | |
G3-CP | 50 | 4 | 98.7±3.9 | 183.0±3.9 | 129.0±1.6 | 199.5±6.2 |
100 | 4 | 93.0±4.2 | 184.7±1.7 | 137.5±6.4 | 198.2±1.7 | |
200 | 4 | 96.7±1.5 | 181.0±1.8 | 140.0±2.2 | 197.0±1.8 | |
G3-CN | 50 | 4 | 91.7±3.0 | 181.0±2.1 | 106.0±1.2 | 185.2±9.2 |
100 | 4 | 90.2±3.8 | 181.2±0.9 | 109.5±6.4 | 192.5±3.1 | |
200 | 4 | 91.7±3.0 | 182.2±2.3 | 105.2±4.5 | 189.0±40 |
For measurement of systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP), glucose, and cholesterol, all mice were fasted for 12 h, after which baseline values were recorded (Tables 1 and 2), HT was induced in all groups by administering N-nitro-L-arginine methyl ether (L-NAME) at a concentration of 30 mg/kg/w/v diluted at a ratio of 1: 3 orally for 8 continuous days29, from which baseline values of SBP, DBP, MAP, glucose and cholesterol were taken in order to have the reference indicators to expose the antihypertensive effect of lyophilized ethanolic extracts of MARA and MA at different concentrations.
The blood pressure (BP) of the animals was measured by an indirect method using an indirect pressure measuring device (Panlab: LE5007). The animals were placed in a bait without trauma with a 6 mm diameter pulse transducer and subjected to a tempering process (temperature 28° C/30 min) for tail vasodilatation30,31.
Glucose and cholesterol (hypercholesterolemia) were measured using the Glucometer (Accu-Chek-Active) and Reflotron Single Channel (Mission Cholesterol) equipment, for which a drop (0.6 mL) of blood was extracted from the lateral caudal vein of the mouse with lancet number 25, placed on test strips, readings were taken and recorded on a record card30.
To evaluate the antihypertensive effect and hypercholesterolemia, the mice in groups G1-MARA and G2-MA were administered lyophilized ethanolic extracts of MARA and MA at concentrations of 50, 100 and 200 mg, while the G3-CP group was administered L-NAME (30 mg/kg/pv) and G4-CN (distilled water) orally ad libitum (drinking troughs), The results of the study were recorded during the daytime (6:00 am) for 6 weeks, with a mixed diet (balanced and forage) and biosecurity management as established by the National Research Council Committee22,23, SBP, DBP, MAP, glucose and cholesterol values were recorded during the daytime (6:00 am) during 6 weeks of the study, as well as control of the presence of collateral signs in the animals without any clinical manifestation.
At the end of the study, all animals from G1-MARA, G2-MA, G3-CP, and G4-CN were killed by desensitization by denudation and the carcasses were buried under strict biosecurity management according to the protocols established by Fuentes Paredes et al.22.
Validation of study quality and statistical analysis. Significance difference contrasts between groups were compared by ANOVA (p<0.05) using the SPSS v. 20 statistical programs, using a 4*332 multifactorial array design.
Results
At 4 weeks of study, a significant decrease and stability (p<0.05) of SBP, DBP, and MAP were observed in the hypertensive mice of G1-MARA and G2-MA, with the highest antihypertensive effect at 200 mg concentration (SBP 113.3±2.9, 114.5±2.1 mmHg), DBP (66.6±4.7, 66.5±2.9 mmHg) and MAP (123.3±2.2, 122.7±3.3 mmHg), while G3-CP increased SBP, DBP and MAP values and G4-CN showed values within the basal range, from the fifth week onwards G1-MARA and G2-MA showed increased blood pressure and hypertension and obesity were observed in the mice (Table 3).
With respect to hypercholesterolemia, the Swiss albino mice of G1-MARA and G2-MA showed statistical differences of significance (p≥0.05) in stabilizing glucose and cholesterol at 4 weeks of study, with 200 mg concentration proving to be an efficient glucose stabilizer (89.0±1.0, 90.0±2.4 mg/dL) and cholesterol (192.6±1.2, 195.0±1.2 mg/dL), while in G3-CP glucose and cholesterol values increased, in G4-CN values within the basal range were observed. From the fifth week onwards, hypercholesterolemia was observed in G1-MARA and G2-MA mice, and obesity and diabetes were apparently observed in the mice (Tables 3 and 4).
Groups | Dose † | Week 1 | Week 2 | Week 3 | ||||||
PAS* | PAD* | PAM* | PAS* | PAD* | PAM* | PAS* | PAD* | PAM* | ||
G1-MARA | 50 | 119.7± 2.8 | 77.2±4.9 | 136.6±5.7 | 119.5±2.0 | 71.0±6.0 | 130.7±5.6 | 122.0±4.5 | 74.7±2.0 | 135.7±3.4 |
100 | 126.0± 4.2 | 78.5±2.8 | 141.5±2.1 | 122.7±2.7 | 70.5±3.1 | 131.3±3.6 | 114.7±5.3 | 74.5±3.1 | 131.8±3.4 | |
200 | 130.0±1.7 | 74.6±4.7 | 139.6±5.5 | 119.6±2.5 | 71.6±7.0 | 131.5±6.2 | 123.3±5.5 | 75.3±5.5 | 137.0±6.5 | |
G2-MA | 50 | 117.7±0.5 | 79.0±1.6 | 137.8±1.6 | 118.0±3.3 | 70.2±2.6 | 129.2±3.8 | 124.7±5.4 | 72.0±5.7 | 134.3±8.2 |
100 | 123.7±4.7 | 78.2±4.9 | 140.1±3.8 | 120.5±5.0 | 70.5±4.3 | 130.7±6.5 | 121.5±8.1 | 72.0±4.2 | 132.7±5.6 | |
200 | 123.2±4.5 | 74.7±3.3 | 136.3±5.0 | 119.7±2.7 | 70.5±4.2 | 130.3±4.1 | 116.2±6.6 | 72.2±4.7 | 130.3±8.0 | |
G3-CP | 50 | 125.0±6.6 | 81.2±2.2 | 143.7±4.4 | 126.2±3.0 | 78.7±3.5 | 141.8±3.5 | 124.7±5.1 | 73.0±5.0 | 135.3±7.3 |
100 | 124.0±0.8 | 79.0±0.8 | 141.0±1.2 | 126.7±0.5 | 80.5±0.8 | 143.8±1.3 | 126.2±0.9 | 75.5±1.2 | 138.6±1.5 | |
200 | 120.0±0.8 | 80.7±0.9 | 140.7±1.1 | 128.0±0.8 | 79.7±0.5 | 143.7±1.8 | 126.2±1.7 | 75.7±1.7 | 138.8±1.4 | |
G4-CN | 50 | 120.2±6.1 | 76.0±5.2 | 136.1±6.8 | 121.5±3.1 | 70.0±3.5 | 130.7±4.3 | 115.5±4.6 | 72.5±4.6 | 130.2±3.2 |
100 | 122.5±1.2 | 79.5±1.2 | 140.7±0.8 | 124.0±0.8 | 69.0±0.8 | 131.0±1.0 | 92.2±5.2 | 72.2±0.9 | 118.3±5.8 | |
200 | 121.5±2.3 | 79.2±0.9 | 140.0±1.3 | 121.7±1.2 | 67.5±0.5 | 128.3±0.9 | 116.2±1.8 | 71.5±1.9 | 129.6±4.2 |
Groups | Dose† | Week 4 | Week 5 | Week 6 | ||||||
PAS* | PAD* | PAM* | PAS* | PAD* | PAM* | PAS* | PAD* | PAM* | ||
G1-MARA | 50 | 117.7±1.7 | 67.0±1.6 | 125.8±2.7 | 119.7±7.6 | 69.7±3.8 | 121.6±4.4 | 122.2±5.5 | 69.5±3.8 | 122.6±5.8 |
100 | 115.2±1.3 | 70.5±2.1 | 140.6±2.2 | 124.2±6.6 | 74.0±1.4 | 123.1±2.2 | 126.0±7.6 | 78.5±3.0 | 120.5±3.7 | |
200 | 113.3±2.9 | 66.6±4.7 | 123.3±2.2 | 123.0±2.0 | 71.3±1.5 | 122.8±1.5 | 129.6±1.1 | 92.3±3.5 | 124.1±3.0 | |
G2-MA | 50 | 118.5±4.1 | 69.2±4.7 | 128.5±1.8 | 124.5±1.7 | 94.0±2.4 | 129.2±2.7 | 127.5±2.6 | 88.0±3.1 | 127.7±2.2 |
100 | 116.0±6.9 | 69.7±6.8 | 127.7±2.7 | 118.5±3.5 | 67.7±5.1 | 123.0±5.6 | 128.5±3.4 | 68.0±3.5 | 123.7±3.3 | |
200 | 114.5±2.1 | 66.5±2.9 | 122.7±3.3 | 117.0±4.5 | 67.0±4.7 | 121.5±5.5 | 131.0±3.9 | 89.7±1.2 | 127.7±2.5 | |
G3-CP | 50 | 128.0±6.1 | 82.7±4.4 | 120.7±5.8 | 125.0±7.1 | 80.2±2.7 | 125.2±6.1 | 124.0±5.2 | 81.0±2.1 | 125.5±4.6 |
100 | 127.0±2.8 | 93.2±2.7 | 122.7±1.1 | 128.2±1.3 | 91.2±0.9 | 126.3±1.4 | 128.7±0.9 | 69.2±0.9 | 128.6±1.2 | |
200 | 129.7±1.7 | 91.5±3.9 | 120.8±2.1 | 127.5±1.2 | 98.2±0.9 | 128.0±0.7 | 127.7±1.7 | 68.5±1.2 | 127.3±3.0 | |
G4-CN | 50 | 116.0±6.4 | 68.2±1.2 | 126.2±4.7 | 114.5±4.9 | 66.5±4.7 | 123.7±4.8 | 116.0±4.0 | 67.5±2.3 | 125.5±2.8 |
100 | 119.2±0.9 | 68.5±4.7 | 128.1±0.6 | 118.0±0.8 | 67.7±1.2 | 126.7±1.0 | 118.0±1.8 | 67.7±0.5 | 126.7±0.2 | |
200 | 116.5±5.7 | 69.0±4.3 | 127.2±1.1 | 118.0±0.8 | 67.5±0.5 | 126.5±0.7 | 118.7±0.5 | 68.0±0.8 | 127.3±0.8 |
Discussion
The results showed a reduction and stability of SBP, DBP, and MAP at 4 weeks of treatment in G1-MARA and G2-MA mice, with 200 mg, while G3-CP increased BP values and G4-CN maintained the basal value, these results indicate that the leaves of MARA and MA contain available flavonoids18,20, nitric oxide, anthocyanins17,19, luteolin-6-C-chinovoside33,34 which are precursors of vasodilators, diuretic action, urine flow, glomerular filtration and excretion of Na+ and K+ and in lyophilized forms are more effective35.
Arroyo et al.36 reduced SBP, DBP, and MAP in hypertensive rats with 1000 mg of hydroalcoholic extract of Z. mays L, Shindo et al.34 reduced BP in hypertensive rats by administration of MA, purple sweet potato, and red radish, Flores Luna15 reported significant changes (p>0.05) in SBP and DBP values in albino rats due to the effect of P. edulis and Petroselinum sativum leaves, our results are similar to those reported and differ from others. The novelty of the study was that the concentration (200 mg) and optimum time of stabilizing antihypertensive action of MARA and MA leave under the mixed maceration-lyophilization method, which appears to be an alternative for controlling hypertension in public and veterinary health, as long as controlled preclinical clinical studies are carried out in other animal species.
Groups | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | |||||||
Dose† | GLU* | COLE* | GLU* | COLE* | GLU* | COLE* | GLU* | COLE* | GLU* | COLE* | GLU* | COLE* | |
G1-MARA | 50 | 139.7±2.9 | 196.0±4.8 | 121.0±2.4 | 194.2±4.7 | 109.5±2.5 | 189.2±7.9 | 99.2±3.0 | 196.5±1.2 | 108.5±1.5 | 181.2±1.9 | 110.2±1.5 | 197.2±1.1 |
100 | 132.0±1.7 | 196.7±1.2 | 121.2±1.7 | 192.5±1.5 | 116.5±1.3 | 198.5±4.5 | 98.2±2.1 | 181.7±1.5 | 111.5±1.3 | 194.5±1.5 | 116.0±2.7 | 199.5±2.5 | |
200 | 139.3±4.7 | 212.3±4.9 | 131.3±1.0 | 206.6±1.1 | 128.0±1.0 | 196.0±4.3 | 89.0±1.0 | 192.6±1.2 | 113.0±1.0 | 198.0±1.3 | 115.0±2.0 | 201.6±2.1 | |
G2-MAÍZ | 50 | 94.7±3.4 | 194.0±3.9 | 99.5±1.1 | 192.2±4.7 | 96.7±1.3 | 201.2±8.9 | 90.7±2.9 | 194.0±2.8 | 96.7±2.3 | 200.2±1.9 | 98.7±3.9 | 202.2±2.7 |
100 | 95.0±3.1 | 206.2±7.5 | 94.0±3.2 | 192.2±5.1 | 94.7±1.2 | 203.2±5.9 | 93.5±1.1 | 198.2±1.8 | 97.7±1.2 | 201.2±1.9 | 99.5±2.1 | 205.2±1.0 | |
200 | 98.5± 1.5 | 206.5±1.3 | 94.0±1.9 | 192.0±4.3 | 92.7±6.2 | 195.0±5.2 | 90.0±2.4 | 195.0±1.2 | 98.7±3.2 | 197.0±3.2 | 101.0±1.4 | 202.0±3.3 | |
G3-CP | 50 | 129.0±1.6 | 199.5±6.2 | 123.2±1.2 | 208.0±6.4 | 116.0±1.2 | 204.2±1.0 | 103.0±3.2 | 191.7±2.1 | 108.0±1.2 | 202.2±2.0 | 110.0±2.2 | 204.0±3.4 |
100 | 137.5±6.4 | 198.2±1.7 | 119.2±1.2 | 209.5±1.9 | 115.0±0.8 | 205.5±4.0 | 110.7±2.2 | 195.2±0.9 | 118.0±0.8 | 208.5±2.0 | 119.7±1.2 | 209.5±2.9 | |
200 | 140.0±2.2 | 197.0±1.8 | 119.5±2.0 | 212.7±2.6 | 108.7±1.7 | 198.0±2.1 | 115.2±2.5 | 195.7±2.0 | 117.7±1.7 | 203.0±2.1 | 118.2±2.0 | 205.7±2.6 | |
G4-CN | 50 | 106.0±1.2 | 185.2±9.2 | 95.2±1.2 | 186.2±3.5 | 91.0±1.0 | 188.7±9.7 | 88.2±1.2 | 185.7±1.0 | 89.0±1.0 | 182.7±1.7 | 87.2±2.2 | 181.2±1.5 |
100 | 109.5±6.4 | 192.5±3.1 | 93.5±3.0 | 186.2±1.5 | 91.2±3.3 | 188.2±1.7 | 90.2±1.4 | 186.5±2.3 | 89.2±1.3 | 180.2±1.3 | 91.2±1.2 | 182.2±1.3 | |
200 | 105.2±4.5 | 189.0±4.0 | 96.2±5.1 | 188.0±2.1 | 93.5±5.8 | 186.7±2.2 | 94.0±2.2 | 186.0±1.4 | 93.5±1.8 | 185.7±1.2 | 94.1±2.0 | 186.0±1.1 |
A palliative decrease in glucose and cholesterol was observed from the second to the third week in G1-MARA and G2-MA, the fourth week it decreased significantly and stabilized at normal values (basal), resulting in 200 mg with greater effectiveness in both groups, the G4-CN remained within the normal-basal value and in G3-CP after induction of L-NAME, no adverse effects were evident and would be related to the content of phenolics, salicylic acid, fats, resins and saponins17,18 which are oxygen free radical scavengers and contribute as stabilizers to hypercholesterolemia and hyperglycemia, a critical role in the pathogenesis of cardiovascular disease13,17,37.
Ravi et al.38 reported lipid-lowering activity in Eugenia jambolana extract, Arroyo et al.36, observed cholesterol and glucose lowering with Z. mays L extracts in hypercholesterolemic rats, Gorinstein et al.39, reduced plasma lipids in rats treated with phenolic compounds and Numan Ahmad & Rabah Takruri Numan40 reduced serum glucose and lipids with wheat bran in rats, results very similar to those obtained in this study, being very dependent on the concentration and time of action found, which would justify the flavonoids present in both plants studied (MARA and MA), leading to a decrease in the formation of free radicals by inhibiting NADPH oxidase and increasing the activity of nitric oxide synthase (eNOS), increasing nitric oxide-promoted vasodilation and providing the ability to respond to endothelial damage by increasing intracellular calcium, which stimulates vasodilation, thus explaining the antihypertensive activity in hypertensive mice.
The study showed a progressive increase in SBP, DBP, MAP, glucose, and cholesterol from the fifth week onwards in mice in the G1 and G2 groups, with extreme values in the sixth week with a greater effect at 200 mg, with hypercholesterolemic tendencies, hypertension, body mass development and adverse effects (vomiting, nervousness, allergy, and diarrhea), warranting discontinuation of treatment, similar behavior in G3-CP (positive) and G4-CN normal state, such results could argue for prolonged treatment, concentrations and routine doses that would imply a negative bioactive functionality of antioxidants, flavonoids as reported in Hesperidin and glucosyl hesperidin40,41, inducing hypercholesterolemia and hypoglycemia in animal models39,42.
Liu et al.43, stabilized plasma glucose and lipids by supplementing chitosan in hypercholesterolemic rats, contradictorily resulting at 21 weeks in elevated body weight, para epididymal fat mass, and retroperitoneal fat mass, Ahmad & Amr44, reported significant increases in very low-density lipoprotein-cholesterol (VLDL-C), atherogenic Index (AI) and serum total cholesterol (TC)/triglycerides (TG) by feeding defatted cocoa to obese rats at 10 weeks, Liu et al.45, improved glucose and lipid metabolism in obese rats with Gelidium amansii extract, Yang et al.46 with Plantago ovata peels optimized metabolic alterations in obese Zucker rats and contradictory, after 10 weeks of treatment, these scientific communications are similar to those reported in the research, indicating that freeze-dried extracts of MARA and MA leaves are precursors of cardiac hypotension and hypercholesterolemia in Swiss albino mice prolonged over 5 weeks of treatment.
Therefore, the research indicated that the lyophilized extract of P. edulis and Z. mays L, manifested to be excellent antihypertensive and hypercholesterolemia reducers and stabilizers, resulting in 200 mg with greater effectiveness in hypertensive Swiss albino mice, however, contradictory action was evidenced after 5 weeks. This research provides a possible therapeutic model for the use of MA and MARA leaves as antihypertensive and hypocholesterolemic stabilizers in veterinary medicine to counteract hypertension and minimize the indiscriminate use of drugs.
Literature cited
1. Salazar M, Barochiner J, Espeche W, Ennis I. COVID-19 and its relationship with hypertension and cardiovascular disease. Hipertens Riesgo Vasc 2020;37(4):176-80. DOI: https://doi.org/doi:10.1016/j.hipert.2020.06.003
2. Merino I. Cirugía vascular e hipertensión arterial. Rev Esp Anestesiol Reanim 2020:67(Suppl 1);45-51. https://doi.org/10.1016/j.redar.2020.02.002
3. Collazos-Perdomo D, Ramírez-Ramos CF, Torres de Galvis MY, Correas-Orozco L, Ramirez-Mendez D, Castilla Agudelo GA, et al. Association between major depression and arterial hypertension in a Colombian population. Hipertens Riesgo Vasc 2020:37(4);162-8. DOI: https://doi.org/10.1016/j.hipert.2020.06.002
4. Ripollés-Melchora J, Lorenteb JV, Monge García MI. Intraoperative management of arterial hypertension in non-cardiac surgery. Rev Esp Anestesiol Reanim 2020;67(Suppl 1):14-9. DOI: https://doi.org/10.1016/j.redar.2020.01.004
5. Carhuallanqui R, Diestra-Cabrera G, Tang-Herrera J, Málaga G. Adherencia al tratamiento farmacológico en pacientes hipertensos atendidos en un hospital general. Rev Med Hered 2010;21(4): 197-201. DOI: https://doi.org/10.20453/rmh.v21i4.1114
6. Fuentes Cortes I, Spengler Salabarría I, Leyva Castillo V, Ferrer Marquez Y, García Pérez TH. Absence of antimicrobial activity in a lyophilized aqueous extract from Capraria biflora L. (goatweed). Rev Cubana Plant Med 2019;24(3):e830.
7. Murillo JD, Robledo SM, Montaño J, Acevedo SP. Variation of intraocular pressure comparing rebound (TONOVET Plus(r)) and applanation (TONO-PEN VET(r)) tonometry in New Zealand rabbits treated with Amlodipine(r). CES Med Vet Zootec 2021;16(3):10-27. DOI: https://doi.org/10.21615/cesmvz.6319
8. Aronow WS, Fleg JL, Pepine CJ, Artinian NT, Bakris G, Brown AS, et al. ACCF/AHA 2011 expert consensus document on hypertension in the elderly: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. Circulation 2011;123(21): 2434-506. DOI: https://doi.org/10.1161/CIR.0b013e31821daaf6
9. Briceño EC, Flores SA, Comerma-Steffensen SG, Rodríguez AE, Zerpa HA. Efectos cardiovasculares de la xilazina en conejos: estudios in vivo e in vitro. Rev Fac Cienc Vet 2012;53(1):3-12.
10. Yahya Mohammed A, Alhaj Omar A, Al-Khalifah Abdullrahman S. Antihypertensive effect of fermented skim camel (Camelus dromedarius) milk on spontaneously hypertensive rats. Nutr Hosp 2017;34(2):416-21. DOI: https://doi.org/10.20960/nh.1163
11. Angulo-Bazán Y. Indicadores bibliometricos de la producción científica peruana en plantas medicinales. Rev Perú Med Exp Salud Publica 2020;37 (3):495-503. DOI: https://doi.org/10.17843/rpmesp.2020.373.5234
12. Soto-Vásquez MR, Rodríguez-Muñoz CA, Tallini LR, Bastida J. Alkaloid composition and biological activities of the Amaryllidaceae Species Ismene amancaes (Ker Gawl.) Herb. Plants 2022;11(15): 1906. DOI: http://doi.org/10.3390/plants11151906
13. Arroyo J, Raez E, Rodríguez M, Chumpitaz V, Burga J, De la Cruz W, et al. Reducción del colesterol y aumento de la capacidad antioxidante por el consumo crónico de maíz morado (Zea mays L) en ratas hipercolesterolémicas. Rev Perú Med Exp Salud Publica 2007;24(2):157-62. DOI: https://doi.org/10.17843/rpmesp.2007.242.1100
14. Gumisiriza H, Sesaazi DC, Olet EA, Kembabazi O, Birungi G. Medicinal plants used to treat "African" diseases by the local communities of Bwambara sub-county in Rukungiri District, Western Uganda. J Ethnopharmacol 2021;268: 113578. DOI: https://doi.org/10.1016/j.jep.2020.113578
15. Flores Luna JM. Comparación del efecto antihipertensivo del zumo del fruto de Passiflora edulis (maracuyá) y extracto acuoso de las hojas de Petroselinum sativum (perejil) en la hipertensión inducida en ratas por L-NAME [tesis maestría]. [Lima]: Universidad Nacional Mayor San Marcos; 2021 [citado 6 de septiembre de 2021]. Recuperado a partir de: https://cybertesis.unmsm.edu.pe/handle/20.500.12672/16206
16. Wang W, Xu J, Fang H, Li Z, Li M. Advances and challenges in medicinal plant breeding. Plant Science 2020;298:110573. DOI: https://doi.org/10.1016/j.plantsci.2020.110573
17. Salinas Moreno Y, García Salinas C, Coutiño Estrada B, Vidal Martínez VA. Variabilidad en contenido y tipos de antocianinas en granos de color azul/morado de poblaciones mexicanas de maíz. Rev Fitotec Mex 2013;36(Suppl 3-a):285-94. DOI: https://doi.org/10.35196/rfm.2013.3-S3-A.285
18. Guillén-Sánchez J, Mori-Arismendi S, Paucar-Menacho LM. Características y propiedades funcionales del maíz morado (Zea mays L.) var. subnigroviolaceo. Scientia Agropecuaria 2014;5(4): 211-7. DOI: https://doi.org/10.17268/sci.agropecu.2014.04.05
19. Mamani-Choquepata R, Mamani-Quispe PV, Manchego-Rosado L, Moreno-Loaiza O, Paz-Aliaga A. Curva dosis-efecto de las antocianinas de tres extractos de Zea mays L. (maíz morado) en la vasodilatación de anillos aórticos de rata. Rev Perú Med Exp Salud Publica 2013;30(4):714-28. DOI: https://doi.org/10.17843/rpmesp.2013.304.263
20. Tian X, Xin H, Paengkoum P, Paengkoum S, Ban C, Sorasak T. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats1. J Anim Sci 2019;97(3):1384-97. DOI: https://doi.org/10.1093/jas/sky477
21. Verde Star MJ, García González S, Rivas Morales C. Metodología científica para el estudio de plantas medicinales. En: Rivas-Morales C, Oranday-Cárdenas MA, Verde-Star MJ, editores. Investigación en plantas de importancia médica. Monterey: Omnia Science; 2016. p. 1-40. DOI: http://doi.org/10.3926/oms.313
22. Fuentes Paredes FM, Mendoza Yanavilca RA, Rosales Fernández AL, Cisneros Tarmeño RA. Guía de manejo y cuidado de animales de Laboratorio: ratón [Internet]. Lima: Instituto Nacional de Salud; 2008 [citado 22 de septiembre de 2021]. 52 p. Recuperado a partir de: http://bvs.minsa.gob.pe/local/INS/962_INS68.pdf
23. National Research Council (US) Committee for the update of the guide for the care and use of laboratory animals. Guide for the care and use of laboratory animals. 8th ed. Washington (DC): National Academies Press (US); 2011. DOI: https://doi.org/10.17226/12910
24. Cebada Reyes JG, Villalobos Espinosa J del C, Dimas Mojarro JJ. Descripción del control de una deshidratadora pasiva y su efecto en la regulación de temperatura en el proceso de deshidratación de hojas de Stevia (Stevia rebaudiana Bertoni). Ingeniería y Región 2020;24:50-6. https://doi.org/10.25054/22161325.2733
25. Carhuapoma DV, Mayhua MP, Valencia MN, Lizana HE. Antibacterial in vitro of effect Urtica dioica and Piper angustifolium in alpacas (Vicugna pacus) with diarrheal enteropathies. MOJ Anat Physiol 2018;5(2):160-2. DOI: https://doi.org/10.15406/mojap.2018.05.00182
26. Castañeda R, Gutiérrez H, Carrillo É, Sotelo A. Leguminosas (Fabaceae) silvestres de uso medicinal del distrito de Lircay, provincia de Angaraes (Huancavelica, Perú). Bol Latinoam Caribe Plantas Med Aromát Pl 2017;16(2):136-49.
27. Salaverry O, Cabrera J. Florística de algunas plantas medicinales. Rev. Perú Med Exp Salud Publica 2014;31(1):165-8. DOI: https://doi.org/10.17843/rpmesp.2014.311.25
28. Ferreres F, Sousa C, Valentão P, Andrade PB, Seabra RM, Gil-Izquierdo A. New C-deoxyhexosyl flavones and antioxidant properties of Passiflora edulis leaf extract. J Agric Food Chem 2007;55(25):10187-93. DOI: https://doi.org/10.1021/jf072119y
29. Sharifi AM, Akbarloo N, Darabi R. Investigation of local ACE activity and structural alterations during development of L-NAME-induced hypertension. Pharmacol Res 2005;52(5):438-44. DOI: https://doi.org/10.1016/j.phrs.2005.07.004
30. Flores Chávez PL, Tena Betancourt CA, Martínez Rosas M, Lerma C. Cámara para calentamiento de ratas utilizadas en el registro no invasivo de la presión arterial. Revista AMMVEPE 2014;24(4): 104-8.
31. Widdop RE, Li XC. A simple versatile method for measuring tail cuff systolic blood pressure in conscious rats. Clin Sci (Lond) 1997;93(3):191-4. DOI: https://doi.org/10.1042/cs0930191
32. Daniel WW. Algunas distribuciones muéstrales importantes. En: Daniel WW, editor. Bioestadística: Base para el análisis de las ciencias de la salud [Internet]. México: Limusa; 1991. p. 137-70. Recuperado a partir de: https://www.estadisticaparalainvestigacion.com/wp-content/uploads/2019/03/Bioestad%C3%ADstica-de-Daniel-Wayne.pdf
33. Mi W, Han F, Liang J, Liang Y, Guan B, Xu H. Purple sweet potato anthocyanins attenuates steatohepatitis induced by high fat diet combined with carbon tetrachloride in rats. Wei Sheng Yan Jiu 2018;47(4):517-24.
34. Shindo M, Kasai T, Abe A, Kondo Y. Effects of dietary administration of plant-derived anthocyanin-rich colors to spontaneously hypertensive rats. J Nutr Sci Vitaminol (Tokyo) 2007;53(1):90-3. DOI: https://doi.org/10.3177/jnsv.53.90
35. García-Villacorta JSG-V, Guarniz-Poma GAG-P, Guevara-Llanos BA, González-Angulo LT, González-Bazán Ángel A, García-Moreno JM, et al. Role of Passiflora edulis (passion fruit) in the control of blood pressure: possible molecular mechanisms. Rev Med Trujillo 2022;17(1):15-20. DOI: https://doi.org/10.17268/rmt.2022.v17i1.4262
36. Arroyo J, Raez E, Rodríguez M, Chumpitaz V, Burga J, De la Cruz W, et al. Actividad antihipertensiva y antioxidante del extracto hidroalcohólico atomizado de maíz morado (Zea mays L) en ratas. Rev Perú Med Exp Salud Publica 2008;25(2):195-9.
37. Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 2020;148:80-9. DOI: https://doi.org/10.1016/j.plaphy.2020.01.006
38. Ravi K, Rajasekaran S, Subramanian S. Antihyperlipidemic effect of Eugenia jambolana seed kernel on streptozotocin-induced diabetes in rats. Food Chem Toxicol 2005;43(9):1433-9. DOI: https://doi.org/10.1016/j.fct.2005.04.004
39. Gorinstein S, Leontowicz H, Leontowicz M, Drzewiecki J, Jastrzebski Z, Tapia MS, et al. Red Star Ruby (Sunrise) and blond qualities of Jaffa grapefruits and their influence on plasma lipid levels and plasma antioxidant activity in rats fed with cholesterol-containing and cholesterol-free diets. Life Sci 2005;77(19):2384-97. DOI: https://doi.org/10.1016/j.lfs.2004.12.049
40. Numan Ahmad M, Rabah Takruri H. The effect of dietary wheat bran on sucrose-induced changes of serum glucose and lipids in rats. Nutr Hosp 2015; 32(4):1636-44. DOI: https://doi.org/10.3305/nh.2015.32.4.9457
41. Yamamoto M, Suzuki A, Hase T. Short-term effects of glucosyl hesperidin and hesperetin on blood pressure and vascular endothelial function in spontaneously hypertensive rats. J Nutr Sci Vitaminol (Tokyo) 2008;54(1):95-8. DOI: https://doi.org/10.3177/jnsv.54.95
42. Mas-Capdevila A, Teichenne J, Domenech-Coca C, Caimari A, Del Bas JM, Escoté X, et al. Effect of Hesperidin on cardiovascular disease risk factors: the role of intestinal microbiota on hesperidin bioavailability. Nutrients 2020;12(5):1488. DOI: https://doi.org/10.3390/nu12051488
43. Liu SH, Cai FY, Chiang MT. Long-term feeding of chitosan ameliorates glucose and lipid metabolism in a high-fructose-diet-impaired rat model of glucose tolerance. Mar Drugs 2015;13(12):7302-13. DOI: https://doi.org/10.3390/md13127067
44. Ahmad MN, Amr AM. The effect of defatted cocoa powder on cholesterol-induced changes of serum lipids in rats. Nutr Hosp 2017;34(3):680-7. DOI: https://doi.org/10.20960/nh.1334
45. Liu HC, Chang CJ, Yang TH, Chiang MT. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model. J Food Drug Anal 2017;25(3):543-9. DOI: https://doi.org/10.1016/j.jfda.2016.06.005
46. Yang TH, Yao HT, Chiang MT. Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet. J Food Drug Anal 2017;25(4):931-8. DOI: https://doi.org/10.1016/j.jfda.2016.12.008
Notes
_______
_______
________
_________
___________
__________
_________
Author notes
Víctor Carhuapoma Delacruz E-mail address: yachayruacc@hotmail.com
Alternative link