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Resumen: La cuenca del río Paute (sur del Ecuador) sufre
cambios hidrológicos por el cambio climático y las actividades
humanas. Los cambios hidrológicos causan eventos extremos y
afectan a ecosistemas, centrales hidroeléctricas y la calidad de
vida. Destaca la importancia de comprender el comportamiento
hidrológico para tomar decisiones adecuadas en ambientes
extremos. Este estudio busca predecir las descargas en la
cuenca del río Paute mediante los índices de teleconexión
global. Se obtuvieron modelos de Regresión Lineal Múltiple
(MLR) mediante tres metodologías diferentes: análisis de
multicolinealidad, Análisis de Componentes Principales (ACP)
y correlación con retrasos mensuales. Se demostró que el
escenario de análisis de componentes principales obtuvo los
mejores ajustes predictivos, específicamente al incluir 41 índices
y 20 componentes. Para el escenario que usa retrasos mensuales,
el mejor retraso ocurre dentro de un solo mes, para la mayoría
de las estaciones. Finalmente, en el escenario de análisis de
multicolinealidad se obtuvieron mejores resultados utilizando
41 índices, aunque esencialmente el rendimiento corresponde
a la cantidad y los índices de cada modelo. Los índices de
teleconexión no son suficientes cuando se utilizan como la única
variable de entrada para el modelado y la predicción de descargas,
dando resultados en su mayoría insatisfactorios. Sin embargo,
existe una clara tendencia que vincula el comportamiento de
caudales e índices, y es posible mejorar los modelos en base a más
variables climáticas o con otros métodos predictivos.

Palabras clave: Bases de datos, predicción de caudales, Índices de
Teleconexión, Análisis de Componentes Principales, Modelos
de Regresión, Análisis de Multicolinealidad.

Abstract: e Paute river basin (southern Ecuador) suffers
hydrological changes due to climate change and human
activities. Hydrological changes cause extreme events and affect
ecosystems, hydroelectric plants, and quality of life. It highlights
the importance of understanding hydrological behavior to make
appropriate decisions in extreme environments. is study seeks
to predict discharges in the Paute river basin through global
teleconnection indices. Multiple Linear Regression (MLR) was
obtained using three different methodologies: multicollinearity
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analysis, Principal Component Analysis (PCA), and correlation
with monthly delays. It was shown that the principal component
analysis scenario obtained the best predictive fits, specifically by
including 41 indices and 20 components. For the scenario using
monthly delays, the best delay occurs within a single month
for most seasons. Finally, with the multicollinearity analysis
scenario, better results were obtained using 41 indices, although
essentially the performance corresponds to the number and
indices of each model. Teleconnection indices are not sufficient
when used as the only input variable for download modeling and
prediction, giving mostly unsatisfactory results. However, a clear
trend links the behavior of flows and indices, and it is possible
to improve the models based on more climatic variables or with
other predictive methods.

Keywords: Discharge prediction, Teleconnection indices,
Principal component analysis, Multiple regression models,
Multicollinearity analysis.

Introduction

Within studies related to global teleconnections between ENSO (El Niño South Oscillation) and discharge,
strong and regionally consistent discharge impacts were found in Central and South America, New Zealand,
and Australia, while weaker signals were observed in parts of Africa and North America (Kundzewicz,
Szwed, & Pińskwar, 2019). To understand more the localized effects of teleconnections, a large number
of studies are currently focused on connecting flooding with climatic variability on a continental scale.
Many relevant studies have been carried out in Australia, Asia, Europe, North America, and South
America. ese studies utilize indices such as ENSO, NAO (North Atlantic Oscillation), AMO (Atlantic
Multidecadal Oscillation), TSA (Tropical Southern Atlantic), TNA (Tropical Northern Atlantic), AO
(Artic Oscillation), and PDO (Pacific Decadal Oscillation), among others (Giddings and Soto, 2006).

In a local context, the most relevant index is ENSO due to its effects. In South America, ENSO causes
floods and droughts along the western coast. However, simulating ENSO in the region faces biases and
uncertainties, especially when dealing with long time series. Systematic errors occur in the central equatorial
Pacific, the eastern equatorial Indian Ocean, and regions with boundary current systems (such as the tropical
Pacific and Atlantic) (Cai et al., 2020).

Within the confines of the study area and its regional dynamics, some studies have been conducted in
Ecuador, demonstrating that the Sea Surface Temperature (SST) variability and ENSO phenomena have
an impact on discharge patterns throughout the nation. Similarly, multiple investigations have established
that discharge anomalies can be found nationwide using ENSO and its modes. (Córdoba Machado et al.,
2015). e research holds particular significance due to its revelation that the three most common natural
catastrophes in Ecuador are floods, droughts, and landslides, with the first two having a significant impact
on local living conditions (Fontaine et al., 2008).

To comprehend the impacts of teleconnections on climate, it is imperative to situate these events
within a climatological context. Teleconnection indices are statistically significant correlations of recurrent
atmospheric anomalies that occur in nearby and distant areas, oen concurrently, at the planetary or
hemispheric level (Hatzaki et al., 2007). In line with this methodology, while examining the sequence
of oscillations that constitute climate variability around the mean values, these anomalies are recognized
by detecting deviations. is representation exemplifies the climate's ephemeral condition in response
to modifications and is demarcated by precise temporal and spatial scales (IDEAM - UNAL, 2018).
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Additionally, the teleconnection fluctuations encompass anomalies within their cycles, generating variability
modes. ese modes are determined from sub-calculations or temporal variations in the behavior of
teleconnection indices (Dima and Lohmann, 2004).

Broadly speaking, focusing on Ecuador and the Andes, ENSO is the primary factor influencing SST
and air pressure. El Niño (warm phase) and La Niña (cold phase) patterns constitute this phenomenon.
Another factor is the PDO, which exhibits warm and cold interdecadal phases that affect the surface waters
of the Pacific Ocean. Recent investigations have identified that the impact of PDO in South America has
increased due to climate change (Morán et al. 2016). Regarding precipitation, indicators related to ENSO
(such as Niño 3.4 and SOI), can affect rainfall in Ecuador; also, Niño 3.4 and SST exhibit a significant causal
relationship. e only significant impact that NP and WP have on rainfall in South America is in Brazil. Due
to spatial distance, AO and AAO have a minimal influence. Widespread droughts have been related to TNA
and TSA. However, droughts or excessive rains in Ecuador or the region show no significant connection to
the NAO (Giddings and Soto, 2006).

Due to its ecological and social relevance, numerous hydrological studies have focused on regional factors
within the Paute river basin in southern Ecuador to comprehend patterns in sub-basin and micro-basin
discharge (Celleri et al., 2007; Sotomayor et al., 2018; Ward et al., 2011). However, considering the recent
understanding of these teleconnection indices, the use of these to forecast water behavior and correlate it
with extreme hydrological events represents a novel exploratory strategy. ese indices operate on a global
scale and might exert a greater influence on hydrological dynamics than local elements do.

As previously mentioned, the significance of this study stems from the fact that substantial ecological and
human losses occur in the area, particularly due to floods in the Sierra region induced by rivers within the
Paute River basin. For that reason, the purpose of the project is to use teleconnection indices and variability
modes to forecast the flow in the Paute river basin. Principal component analysis (PCA), correlation with
monthly delay, and MLR with multicollinearity analysis are all part of the process of forecasting. e levels
of prediction for each methodology will then be evaluated using statistical measures by contrasting the
outcomes with the original data.

Materials y Methods

Study area

e study was conducted in the Paute river basin in southern Ecuador (Figure 1). e basin covers
approximately 6437 km2, with slopes ranging from 25% to 50% (CELEC EP 2013). e basin covers the
Azuay, Cañar, and Morona Santiago provinces and is part of the Santiago River basin. Annual rainfall reaches
its maximum average between 2500-3000 mm in the eastern region, while in the western region, it ranges
between 1200-1500 mm (Institute of Regime Studies et al., 2017). e area experiences two distinct periods
of frequent precipitation due to the ITCZ. e wet season for the unimodal regime occurs from June to
August, while for the bimodal regime, it takes place from March to May (Campozano et al., 2016).
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FIGURE 1
Location of the study site, as well as the location of the different

sub-basins and the discharge and precipitation stations

e Paute basin consists of 18 hydrological sub-basins (Figure 1), which discharge, through a fall process,
feeds the hydroelectric plants with a discharge value of Mazar (141.10 m3/s), Molino (200 m3/s), Sopladora
(150 m3/s) and Cardenillo (180 m3/s), El Labrado and Chanlud (2.4 m3/s and 4.18 m3/s respectively)
(Orbes & Peralta, 2017; Matute Pinos, 2014). e amount of energy produced by each of the aforementioned
plants is Amaluza (1.075 MW), El Labrado and Chanlud dams feed two plants, Saymirin and Sucay (14.4
MW and 24 MW respectively); Mazar (162.6 MW) and Sopladora (500 MW). It is estimated that in total,
it produces 40% of the hydroelectric production at the country level (Contreras et al., 2017).

Hydrometeorological and climatic data

Data from discharge stations of the Ecuadorian Institute for Meteorology and Hydrology (INAMHI) were
collected for 20 years (1995-2015) on a monthly scale. Only stations with at least 40% data availability were
considered, resulting in a total of nine stations (Table 1). Data filling was performed using the ten nearest
discharge and precipitation stations for each selected station. e average monthly discharge amount was
used to complete the missing data.
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TABLE 1
Discharge and precipitation stations used for the study

In addition, data for time series of teleconnection indices and modes of variability were obtained from
the database of the National Oceanic and Atmospheric Administration [41 indices (NOAA - https://
psl.noaa.gov/data/climateindices/list/)].

Flow modeling using atmospheric and oceanic climatic indices

Teleconnection indicators, climate variability modes, and MLR were used in the flow modeling process. A
variety of criteria, including PCA, correlation with monthly delays, and multicollinearity analysis, were used
to generate MLRs. For calibration and validation, the study used 80% of the data. Data were utilized for
calibration directly from January 1995 to September 2011, and for validation directly from September 2011
to December 2015.

Flow modeling using Principal Component Analysis (PCA)

PCA was used on teleconnection indices and climate variability modes to minimize the number of variables.
MLR analyzed factors accounting for 70% and 90% of the variance (Rea and Rea 2016). R soware's
"prcomp" function was employed for this. PCA is essential for reducing dimensionality in data analysis while
maintaining data variety and representativeness (Shabri and Shuhaida, 2014).

Modeling using Atmospheric and Oceanic Climate Indices and Monthly Delays

ree forecast scenarios were constructed to take into account the delay processes between atmospheric
circulation and precipitation/flow effects. In these circumstances, the indices were delayed by the flow values
by one, two, and three months. e top five teleconnection indicators for each discharge station with the
highest Pearson correlation coefficients were chosen for MLR creation.
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Modeling using multicollinearity analysis

A multicollinearity study was carried out to reduce the number of variables to address the problem of many
variables. Multicollinearity, which indicates linear dependence across predictors and interferes with each
predictor's effects on the dependent variable, was discovered using the Variance Inflation Factor (VIF) (Vega
Vilca and Guzman, 2011). e appropriate VIF value was five, and variables that exceeded this limit were
eliminated. For MLR building, the Leap Sequence criterion, combining forward and backward selections,
was utilized (Hastie et al., 2021). RStudio soware with the MASS package and the "leapseq" function were
utilized for this process.

Goodness of fit of the resulting models

To determine the accuracy of the predictions made, a series of metrics were processed in the R soware
V4.0.2, using the “hydroGOF” package. e metrics used in this study were KGE (Knoben, Freer and
Woods, 2019), NSE (Krause, Boyle and Bäse, 2005), RMSE (Meyer, 2010), and R2. e model with the
highest value in their metrics was considered the best model.

Results and Discussion

Modeling using Principal Component Analysis (PCA)
Of the 41 teleconnection indices, 10 and 20 main components were obtained, which explain 70% and 90%

of the variance, respectively. It is considered that a 70% explanation of variance is a significant percentage for
the study; however, the components that explained 90% of the explanation of variance were used to obtain
a better prediction of flows (Rea and Rea, 2016).

e components obtained in the PCA analysis were used to perform a multiple regression model. e
results obtained with the PCA analysis were plotted in time series and dispersion diagrams; the results can
be seen in Figures 2 - 5.

Figures 2-5 illustrate that the results align with observed values, but predictions deviate from the actual
values. Underestimation occurs at low values, while overestimation occurs at high values. Although the
model performs better for lower values, it fails to accurately reflect extreme events. is limitation arises from
using only MLR and station values without considering environmental behavior or hydrological processes.
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FIGURA 2
Observed and modeled flow time series using MLR and ACP (calibration stage)

a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar

FIGURA 3
Observed and modeled flow time series using MLR and ACP (validation stage)

a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar
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FIGURA 4
Dispersion plots of observed and modeled discharge using MLR and ACP (calibration stage).

a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar
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FIGURE 5
Dispersion plots of observed and modeled discharge using MLR and ACP (validation stage).

a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar

During the validation phase, synchronization is seen in severe events that are within the station ranges of
each participant. e precision is still less than at the calibration stage, though. e minimum p-values on
the dispersion plots in both stages demonstrate statistical significance and a distinct correlation between the
indices and the stations from the Paute basin. It's crucial to remember that these outcomes are dependent
on the data utilized and independent of the robustness of the model.

Among all the stations, Paute AJ Dudas and Dudas (Figures 2a-2h, 3a-3h, 4a-4h, and 5a-5h) exhibit the
best-fit models with correlations of 0.41 and 0.48, respectively, during the calibration stage. However, during
the validation stage, none of the stations achieved satisfactory results, with the highest correlation observed
in Dudas at 0.36 and Mazar at 0.26. is indicates that the models heavily rely on the initial conditions of
the study and do not effectively incorporate other environmental or hydrological data.

Paute DJ Gualaceo and Surucucho demonstrate the lowest correlation results during the calibration
stage, with values of 0.23 and 0.26 (Figures 2d-2e, 3d-3e, 4d-4e, and 5d-5e). Overall, the calibration results
exhibit low correlations, sometimes as low as 0.01, indicating a lack of robustness in the models using this
methodology.

Table 2
Metrics results at calibration and validation stage
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TABLE 2
Metrics results at calibration and validation stage

ere aren’t satisfactory results in these models; in Table 2 we can observe that Dudas, Collay, and
Mazar were the stations with less RMSE even when only Dudas had a good model fit, which means this
could be related to the low original discharge values and their predictions and not properly with the model
functioning. According to Moriasi et al. (2007), the NSE does not show satisfactory results (from 0.6 or
higher), classification describes a performance as very good, good, satisfactory, and unsatisfactory with values
higher to 0.75, between 0.65 – 0.75, between 0.5 – 0.65 and lower to 0.5 respectively. Dudas and Paute
AJ Dudas also domain this metric in the calibration stage. KGE gets better performance values than NSE,
without changing the results of stations.

In the validation stage, Dudas still has one of the best performances, but Mazar and Matadero also appear
here. ese metrics do not have any special tendency. A study made in New Gales, Australia, using the indices
ENSO, MEI, IOD, Niño 3.4, PDO, and TPI to predict the study zone discharges, got NSE values between
0.15 – 0.55, which means that indices by themselves are not enough to predict discharge (Esha, Imteaz y
Nazari, 2019). A study realized in western Canada mentions that PDO (used in our study), even when related
to ENSO, also has great uncertainty regarding the nature and origin of the index variability itself; which
results in a waste of potential use in forecasting studies, especially because the statistic shows that it is highly
related to water resources (Whitfield et al., 2010).

In comparison to other approaches, PCA had the lowest RSME, indicating that other indices may be more
closely associated than the ENSO index or its variability modes (unique indices have the potential to affect
only this methodology). Additionally, there may be several variables utilized for the study; however, the VIF
approach challenges this idea because, in some instances, the indices used for the models soar to 13. Metrics
show that incorporating 90% of variance in all models rather than just 70% results in an improvement.
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FIGURE 6
Factorial Components of ACP using 41 indices and 20 Components

In Figure 6, we can observe the loading factor of ACP, which is the influence of every index on the
20 components. According to the study, the best models (90%) are indirectly related to ENSO indices
and not to the study area, as can be identified in a comparison between the indices and their influence
on each component used in the modeling (AT SST EOF, PWR, and SWMRR (South West Monsoon
Region Rainfall) with positive values, NAO (Jones), NP, PNA, SR, and TP SST EOF (Tropical Pacific SST
Empirical Orthogonal Function) (negatives). e highest correlations occur with SWMRR (0.39) and AT
SST EOF (0.21). is correlation could occur because the rainfall season of SWMRR in Mexico and Arizona
happens from June to September, matching the wet season of the Paute River Basin of the unimodal regimen
from June to August (Campozano et al., 2016 & Crimmins, 2014). And AT SST EOF correlation is related
to the location of this anomaly in Ecuador (Fan and Schneider, 2012).

e PNA and other ENSO patterns used in research on the Canadian Columbia River basin showed that
depending on the station (certain months), ENSO variability modes could be more or less influent, even
causing an anomaly in the river discharges (Gobena, Weber y Fleming, 2013). As the results of our models
are not accurate, this can be considered an explanation, having indexes that are more related to anomalies
in the ACP study, being necessary to realize a correlation study considering each station’s anomaly values
on the data time series.

In a study made in Iran, 25 variability modes of teleconnection indices were used to explain the variability
of precipitation using ACP methodology (AMO, AMM, BEST, Niño 3.4, El Niño 4, NTA, SOI, and
TNA). Results show eight principal components that explain 80% of the variance (Choubin et al., 2016). In
Colombia, a study that analyzes the climatic variability of the Cauca River using the ACP in Index (CCC,
an index of the own river; ONI; PDO; EMI, El Niño Midoki; SST; SOI; and MEI) has as results that two
components that explain 80% of the variance, an only one explaining 70%. e eigenvalues (proportional to
loading factors) showed that this first component with 70% of variance was more associated with ENSO and
the two components with 80% of variance were more related to the index of the study zone CCC (Sedano,
2017). In our study, the models work similarly, most of the indices directly correlate with ENSO and SST.
It is also visible in the studies of Choubin et al. (2016) and Sedano (2017) that the percentage of input data
needed to explain 70% of the variance is from 25 – 30%, and for upper percentages, it is from 35 – 50% of
them. e influence of every index involved decreases with the number of components, focusing on their
correlation.

Modeling using Atmospheric and Oceanic Climate Indices and Monthly Delays
To determine the variables of each prediction model for the discharge stations, the Pearson correlation was

carried out for the different stations and the teleconnection indices, making delays of one to three months,
considering the absolute value of the correlations. e first five indices with the highest values were used.
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e best results were obtained by performing a one-month delay between the values of the stations and the
teleconnection rates. e results of the correlation using a delay month can be seen in Figure 7.

FIGURE 7
Graphic representation of the existing correlation between discharge stations and teleconnection indices

e absolute values of correlation are usually in a range from 0.35 to 0.61. e highest correlation is the
Dudas station with a CIP index of 0.61, and the lowest belongs to the same station with an NTA index with
0.11. Once the correlation values between the discharge stations and the different teleconnection indices
were obtained, the following was to identify the five indices with the highest absolute correlation values,
which are presented in Table 3.

TABLE 3
Absolute Correlation values of the indices used for the

multiple regression models of each discharge station

e MLRs were generated with the indices from Table 2. e results are presented in Figures 8-11 with
a one-month delay; the behavior of the modeled time series adjusts to the trend of the series of each station,
especially at mean values and low values. However, it presents the same problem as the series predicted with
the PCA method. All values are indifferent to the model results.
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FIGURE 8
Observed and modeled flow time series using MLR and one-month delay (calibration stage).

a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar

FIGURE 9
Observed and modeled flow time series using MLR and one-month delay (validation stage).

a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar

In 2018, an investigation into the evolution of the sediments of several lakes in the El Cajas National
Park determined that, with a one-month delay for the ENSO index, the results of the correlation with the
precipitations close to the local stations were solid, proving that there is a strong positive link between intense
rains and therefore an increase in flow between La Niña, Niño 3.4 (which explains the variability of the
Ecuadorian Andes), El Niño 4 (a more intense relationship), El Niño 1+2 (which explains the variability of
the coastal plains), and a more neutral link with El Niño (Schneider et al., 2018).

e delay of one month in our study proves that there is a delay in the effects of the teleconnection rates
on the climatic conditions of the Paute river basin. And that the variability of the indices fits with the level
of correlation found considering the spatial configuration of the studies. In a study carried out in Brazil on
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the relationship between the alluvial plains and the connection with the signals (variability modes) of ENSO
teleconnection (El Niño, Niño 3.4, SOI), it was determined that for the Amazon basin, there is a delay of two
months. is occurs from January to March and causes lower rainfall, causing a decrease in flow (Schöngart
et al., 2004). However, an investigation carried out in Peru on the relationship between monthly rainfall and
SST identified that in the areas of the equatorial Pacific, ENSO has a delay of one month in the wet season
and zero in the dry season (Bazo, Lorenzo and Porfirio Da Rocha, 2013). When comparing our results with
the literature, it confirms our results because the indices with the highest correlation for this scenario are
AMM, NP, PWR and, WHWP, which are strongly influenced by ENSO variability modes.

FIGURE 10
Dispersion plots of observed and modeled discharge using MLR and one-month delay (calibration stage).

a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar
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FIGURE 11
Dispersion plots of observed and modeled discharge using MLR and one-month delay (validation stage).

a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar

e PWR index is conditioned by El Niño (Carreric, 2020); on the other hand, the WHWP index is also
directly affected by El Niño in the summer through the TNA temperature increase that occurs during the
El Niño winter in the Pacific (Wang y Enfield, 2001). NP is dominated by the interannual variations of the
El Niño and La Niña events (Espino Sánchez, 2014); AMM, for its part, produces anomalies in the SST
north of Ecuador, but it occurs during the boreal spring (March) with greater intensity. In a case study of
the rivers of Quebec in Canada was discovered that between ENSO, NAO, and PDO there is a large delay
between the effect of the patterns and the answer on the discharge. It is also mentioned that the modes of
variability associated with teleconnection patterns can change the periodicity and the stationary effects. is
can explain the non-optimal fit models in this methodology (McGregor, 2017).

For the modeling, an acceptable R2 value is obtained in Dudas with 0.53 (Figure 10h), which confirms
the ability of the models to capture the averages. e second-best performance occurs at the Gualaceo station
with a coefficient of 0.31 (Figure 10b) and Matadero with 0.28 (Figure 10f). In this case, two of the stations
varied in the indices used, which represented a great improvement for both cases. e models with the lowest
performance are Paute DJ Gualaceo and Tomebamba, both with a value of 0.16 (Figure 10c – 10d).

When analyzing the coefficient of determination (Table 4), it can be seen that Dudas station is acceptable
according to the bibliography. Since values less than 0.5 indicate in a hydrological model that there is a large
error variance integrated into the model and that it cannot be explained by it, in other words, using only the
values of the indices in a multiple regression model does not give good results for the flows of the Paute river



Revista Tecnológica ESPOL - RTE, 2023, vol. 35, núm. 2, Esp., Septiembre-Octubre, ISSN: 0257-1749...

PDF generado a partir de XML-JATS4R 42

basin. ere are local and regional variables that could be integrated into the model, improving its predictive
capacity (Moriasi et al., 2007).

TABLE 4
ACP metrics results at calibration and validation stage

In this modeling, we get the best fit of the model. NSE reaches a satisfactory result in the calibration stage
with Dudas, and KGE gets a good fit model (0.61). Paute AJ Dudas´s results are reduced compared with
other methodologies; this can occur when analyzing where stations are located and how the delay effects
affect every station. Tomebamba and Gualaceo have the lowest results, reaching 0.15 and 0.16 on NSE and
KGE, respectively. RMSE is only related to the discharge of each station and not the results of the modeling.

In the calibration stage, Dudas is still the best station with 0.37 on KGE, while Collay gets the worst results
with -4.96 on NSE and zero on KGE. is means that the average monthly values are a better predictor than
our model (Krause et al., 2005). e variance range is very wide, and these results prove that the models have
no statistical robustness even when the p-value maintains infinity in all cases (both stages).

Modeling using multicollinearity analysis
e third case used for flow modeling was a preliminary analysis of multicollinearity, as explained in the

previous section on materials and methods. When using the VIF criterion for the reduction of the variables, a
total of 22 variables were obtained (reduction of almost half of the original variables); the resulting variables
were PNA, WP, EA/WR, NAO, TSA, PDO, NP, AO, AAO, PWR, CAR, AMOS, QBO, SR, SF, GB, EP/
NP, NAO (Jones), NOI, CIP, NBRA, SWMRR and AT SST EOF. None of the modes of variability or
signals directly related to ENSO (MEI V2, Niño 1+2, Niño 3, Niño 3.4, Niño 4, SOI, ONI) are reflected
in the results. Indirectly, we find NP, which indicates its high influence on the rest of the indices and its
intimately connected and similar behavior. is also happens with the indices AMO UNSMOOTHED,
AMM, and AMO SMOOTHED, since only one is kept aer VIF analysis. With the resulting variables,
the next step was the construction of the MLR using the stepwise criterion. e best model for each of the
discharge stations is presented in Table 5.
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TABLE 5
MLR used for prediction with Multicollinearity Analysis

Figures 12-15 show the results of the predictions made under the VIF analysis for multicollinearity.
e trends are maintained in all seasons, and visually, the results are acceptable (Dudas achieves the best
modeling).

FIGURE 12
Observed and modeled flow time series using MLR and Multicollinearity Analysis (calibration stage).

a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar
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FIGURE 13
Observed and modeled flow time series using MLR and Multicollinearity Analysis (validation stage).

a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar

TABLE 6
Metrics results at the calibration and the validation stage

Using VIF to select the indices as variables in every model gave us different results for every station, and
these results are not related to the functioning of indices but only to methodology. In the calibration stage,
Dudas obtained the closest to a good result on correlation, NSE, and KGE, with 0.40 and 0.48, respectively.
Paute AJ Dudas gets another close result to satisfactory with 0.38 in KGE. e worst fits occur on Matadero
and Gualaceo, reaching even negative values on KGE (0.14 to -0.02). In this model, it is very clear that the
results are not improved by using more variables. As a result, Dudas only uses one index to obtain better
results in comparison with Mazar, which uses 5 (the maximum number of variables in each station) and gets
poor results. e noise in this methodology does not influence it drastically since all RMSEs tend to maintain
low values, which means the results are a show of the functioning itself. Dudas has one variable, Paute AJ
Dudas 5, Matadero, and Gualaceo 1 and 2, proving that only one index is enough to capture the variability
of the discharges if it is related to the environment of the station.

In the validation stage, Tomebamba is the “best” fit model with -2.69; the rest have also negative values on
NSE, in KGE. ese results are similar, except in the case of Dudas with a 0.45 correlation, proving that is
the station with the best results throughout the study. RMSE in both cases still obeys the initial values of the
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data to show results more than the model prediction, which is why the stations with the highest values, Paute
AJ Dudas and Paute DJ Gualaceo, have high RSME, but their performance is very different, with Paute AJ
Dudas the second-best station to fit the models.

FIGURE 14
Dispersion plots of observed and modeled discharge using

MLR and Multicollinearity Analysis (calibration stage).
a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar

A study made in Indonesia that used SOI, Niño 3.4, and IOD indices to analyze the Java discharge regimen
identified that the results on LRM with KGE metrics were best when the model included more variables
(Nugroho, Tamagawa and Harada, 2022). is also happened in our study using this specific methodology,
where we used a different number of variables for every station. In addition, from a general perspective, when
using 20 components as variables on ACP also happened.

When we analyze Figure 14f, we can see the worst result: Matadero used only PWR to get the predictions,
and we can see no relation between the behavior of the original series and the predicted one. P- value
maintains low in every station which means they are statistically representative. RSME is dominated by the
same behavior as in the two other methodologies.
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FIGURE 15
Dispersion plots of observed and modeled discharge using

MLR and Multicollinearity Analysis (validation stage).
a) Paute AJ Dudas, b) Gualaceo, c) Tomebamba, d) Paute DJ Gualaceo, e) Surucucho, f) Matadero, g) Collay, h) Dudas, i) Mazar

Even when the best models tend to have more variables, the variables change for every station; this is proven
because stations with the same indices can have bad or good indices and are independent of each other. Also,
there are stations that, using the same number of indices, can have better results than other stations. e
results are directly linked with how the values of the time series couple with the indices data in an individual
way. And the value of the data itself does not influence the results.

ere are no similar indices used in all scenarios, but the ones that are present in the two methodologies
(VIF and using monthly delays) are: NP, PWR, CAR, and CIP; also, this one has the most influence on
loading factors in ACP (NP and PWR). e two better-fitting stations are Dudas and Paute AJ Dudas since
this one does not have extreme events as frequently as the other stations, allowing LRM to work better.
is methodology is good for approximation but it is limited to mathematical procedure because the only
input data is the time series and not any environmental variable that can help to understand the hydrological
behaviors (not environmental context or another variable). e stations with the worst results are Mazar,
Gualaceo, and Matadero. Also, the validation range time could be amplified to improve the models by
catching more variability, especially in the extreme events that are not so frequent. In the Amazon Basin,
research determined that ENSO domains the conditions of the discharges but does not fully understand
the behavior of each variability mode and its effects. is is caused by the temporal SST anomalies, their
magnitude, and their position in the equatorial Pacific Ocean. e study also points out that some statistical
tests, such as Kendall, could not be suitable for certain regions. With a large-basin memory, it leads to
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autocorrelation and misleading significance (Towner et al., 2020). is is not only observed in our study but
also evidenced in each of the methodologies used.

Conclusions

e best models can follow the original data tendency but cannot predict whether the values are too low or
too high. e best scenarios were obtained when using PCA as a general view, but the best values in metrics
were obtained when using a 1-month delay. e models except Dudas and Paute AJ Dudas mostly didn’t
reach a satisfactory result in all metrics (NSE, KGE, R2). is means that indices are not enough as discharge
predictors. RSME is not a good metric in our study since its values were associated with the data and not
with the model’s performance in all cases. It shows a very light tendency on PCA, lowering their values. e
validation stage determines that the models do not have robustness, and this is directly related to the initial
conditions of our models not applying to different contexts. We have several indices associated with ENSO
that do not represent any relevance in the study (AO, BEST, ENSO, GIAM, MEI V2, NAO, Niño 3, Niño
3.4, ONI, SOI, TPI, and IPO). It is important to recognize if this index has a direct or indirect effect on the
zone and which of his variability modes better represents it. Finally, it is important to highlight that being a
first approximation to the use of all teleconnection indices to measure their predictive capacity in the Paute
river basin, the results are very interpretable. It is essential to mention that the teleconnection indices (signals
and modes of variability), in addition to providing global information, maintain a well-studied atmospheric
and oceanic circulation. is makes it possible not only to observe climate variability on a large spatial and
temporal scale but also to analyze variables dependent on these phenomena without having to resort to
breaking them down for a single study.

Acknowledgments

e authors would like to thank the INAMHI for the information provided. is work was founded for
Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia (CEDIA) within the research
project “Análisis Nexus agua-alimentos-energía- servicios ecosistémicos ante cambios del clima, uso del suelo
y población. Un enfoque novedoso para el desarrollo sostenible local a escala de una cuenca hidrográfica” and
Vicerrectorado de Investigaciones de la Universidad de Cuenca (VIUC).

References

Bazo, J., Lorenzo, M. D. L. N., & Porfirio Da Rocha, R. (2013). Relationship between monthly rainfall in NW Peru
and tropical sea surface temperature. Advances in Meteorology, 2013. https://doi.org/10.1155/2013/152875

Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R., Taschetto, A. S., Garreaud, R. D., Dewitte, B., Poveda,
G., Ham, Y.-G., Santoso, A., Ng, B., Anderson, W., Wang, G., Geng, T., Jo, H.-S., Marengo, J. A., Alves, L. M.,
Osman, M., Li, S., … Vera, C. (2020). Climate impacts of the El Niño–Southern Oscillation on South America.
Nature Reviews Earth & Environment, 1(4), 215–231. https://doi.org/10.1038/s43017- 020-0040-3

Campozano, L., Célleri, R., Trachte, K., Bendix, J., & Samaniego, E. (2016). Rainfall and Cloud Dynamics
in the Andes: A Southern Ecuador Case Study. Advances in Meteorology, 2016, 1–15. https://
doi.org/10.1155/2016/3192765

Carreric, A. (2019). Enso diversity and global warming (Doctoral dissertation, Université Paul Sabatier-Toulouse III).
CELEC EP. (2013). Actualización Del Estudio De Impacto Ambiental Y Plan De Manejo Ex Post De La Central

Paute Molino (Update of Environmental Impact Assessment and Post-Management Plan of Paute Molino
Power Plant).

https://doi.org/10.1155/2013/152875


Revista Tecnológica ESPOL - RTE, 2023, vol. 35, núm. 2, Esp., Septiembre-Octubre, ISSN: 0257-1749...

PDF generado a partir de XML-JATS4R 48

Celleri, R., Willems, P., Buytaert, W., & Feyen, J. (2007). Space–time rainfall variability in the Paute basin, Ecuadorian
Andes. Hydrological Processes, 21(24), 3316–3327. https://doi.org/10.1002/hyp.6575

Choubin, B., Khalighi-Sigaroodi, S., Malekian, A., & Kişi, Ö. (2016). Multiple linear regression, multi-layer perceptron
network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate
signals. Hydrological Sciences Journal, 61(6), 1001–1009. https://doi.org/10.1080/02626667.2014.966721

Córdoba Machado, S., Palomino Lemus, R., Gámiz Fortis, S. R., Castro Díez, Y., & EstebanParra, M. J. (2015).
Assessing the impact of El Niño Modoki on seasonal precipitation in Colombia. Global and Planetary Change,
124, 41–61. https://doi.org/10.1016/j.gloplacha.2014.11.003

Crimmins, M. (2014). Southwestern Monsoon. Climate Assessment for the SouthWest. Monsoon | CLIMAS
(arizona.edu)

Dima, M., & Lohmann, G. (2004). Fundamental and derived modes of climate variability: concept and
application to interannual time-scales. Tellus A: Dynamic Meteorology and Oceanography, 56(3), 229. https://
doi.org/10.3402/tellusa.v56i3.14415

Esha, R. I., Imteaz, M. A., & Nazari, A. (2019). Assessing Gene Expression Programming as a technique for seasonal
streamflow prediction: A case study of NSW. IOP Conference Series: Earth and Environmental Science, 351(1),
012004. https://doi.org/10.1088/1755-1315/351/1/012004

Espino Sánchez, M. A. (2014). Patrones de variabilidad ambiental y las pesquerías en el Pacífico Sud Este (Patterns of
Environmental Variability and Fisheries in the Southeast Pacific). Universidad Nacional Mayor de San Marcos.

Fan, M., & Schneider, E. K. (2012). Observed Decadal North Atlantic Tripole SST Variability. Part I: Weather Noise
Forcing and Coupled Response. Journal of the Atmospheric Sciences, 69(1), 35–50. https://doi. org/10.1175/
JAS-D-11-018.1

Giddings, L., & Soto, M. (2006). Teleconexiones y precipitación en América del Sur [Teleconnections and precipitation
in South America].6, 13–20.

Gobena, A. K., Weber, F. A., & Fleming, S. W. (2013). e Role of Large-Scale Climate Modes in Regional Streamflow
Variability and Implications for Water Supply Forecasting: A Case Study of the Canadian Columbia River Basin.
Atmosphere-Ocean, 51(4), 380–391. https://doi.org/10.1080/07055900.2012.75 9899

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning (2nd ed.). Springer
Hatzaki, M., Flocas, H. A., Asimakopoulos, D. N., & Maheras, P. (2007). e eastern Mediterranean teleconnection

pattern: identification and definition. International Journal of Climatology, 27(6), 727–737. https://doi.
org/10.1002/joc.1429

IDEAM - UNAL (2018). Variabilidad Climática y el cambio climático en Colombia (1era ed.) [Climate Variability
Contreras, J., Ballari, D., & Samaniego, E. (2017). EJE 02-09 Optimización de una red de monitoreo de precipitación

usando modelos Geoestadísticos: caso de estudio en la cuenca del río Paute, Ecuador [AXIS 02-09 Optimization
of a precipitation monitoring network using geostatistical models: case study in the Paute river basin,
Ecuador]. Memorias Y Boletines De La Universidad Del Azuay, 1(XVI), 115–124. https:// doi.org/10.33324/
memorias.v1iXVI.55

Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: Inherent benchmark or not? Comparing Nash–
Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323– 4331. https:/
/doi.org/10.5194/hess-23-4323-2019

Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model
assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005

Kundzewicz, Szwed, & Pińskwar. (2019). Climate Variability and Floods—A global Review. Water, 11(7), 1399. ht
tps://doi.org/10.3390/w11071399

Matute, V. (2014). Análisis De Factibilidad De Generación Eléctrica A Pie De La Presa De Chanlud (Doctoral
dissertation, Universidad de Cuenca).

McGregor, G. (2017). Hydroclimatology, modes of climatic variability and stream flow, lake and groundwater
level variability. Progress in Physical Geography: Earth and Environment, 41(4), 496–512. https://
doi.org/10.1177/0309133317726537

https://doi.org/10.1016/j.gloplacha.2014.11.003
https://doi.org/10.1088/1755-1315/351/1/012004
https://doi
https://doi.org/10.1080/07055900.2012.75
https://doi
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.3390/w11071399
https://doi.org/10.3390/w11071399


María Daniela González, et al. Comparación de metodologías para la predicción del caudal mediante ...

PDF generado a partir de XML-JATS4R 49

Meyer, T. (2010). Technical note: Root Mean Square Error Compared to, and Contrasted with, Standard Deviation.
Morán-Tejeda, E., Bazo, J., López-Moreno, J. I., Aguilar, E., Azorín-Molina, C., Sanchez-Lorenzo, A., Martínez, R.,

Nieto, J. J., Mejía, R., Martín-Hernández, N., & Vicente-Serrano, S. M. (2016). Climate trends and variability
in Ecuador (1966-2011). International Journal of Climatology, 36(11), 3839–3855. https:// doi.org/10.1002/
joc.4597

Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., & Veith, T. (2007). Model Evaluation Guidelines for
Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900.
https://doi.org/10.13031/2013.23153

Nugroho, A. R., Tamagawa, I., & Harada, M. (2022). Spatiotemporal Analysis on the Teleconnection of ENSO and
IOD to the Stream Flow Regimes in Java, Indonesia. Water (Switzerland), 14(2). https://doi.org/10.3390/
w14020168

Orbes, J., & Peralta, T. (2017). Estado del arte en Manejo de Sedimentos en cuencas Andinas en el Ecuador, caso de
estudio: cuenca del Río Paute [State of the Art in Sediment Management in Andean Watersheds in Ecuador,
Case Study: Paute River Basin]. (Bachellor dissertation, Universidad de Cuenca)

Fontaine, G., Narváez, I., and Cisneros, P. (2008). [Geo Ecuador 2008: State of the Environment Report]. FLACSO.
Quito, Ecuador. Available online at: https://biblio.flacsoandes.edu.ec/libros/digital/41444.pdf (accessed April
24, 2023).

Rea, A., & Rea, W. (2016). How Many Components should be Retained from a Multivariate Time Series PCA ?
Schneider, T., Hampel, H., Mosquera, P. V., Tylmann, W., & Grosjean, M. (2018). Paleo-ENSO revisited: Ecuadorian

Lake Pallcacocha does not reveal a conclusive El Niño signal. Global and Planetary Change, 168, 54–66. https
://doi.org/10.1016/j.gloplacha.2018.06.004

Schöngart, J., Junk, W. J., Piedade, M. T. F., Ayres, J. M., Hüttermann, A., & Worbes, M. (2004). Teleconnection
between tree growth in the Amazonian floodplains and the El Niño-Southern Oscillation effect. Global Change
Biology, 10(5), 683–692. https://doi.org/10.1111/j.1529-8817.2003.00754.x

Sedano, R. (2017). Influencia de la variabilidad climática y factores antrópicos en los extremos hidrológicos en el Valle
Alto del río Cauca, Colombia [Influence of Climate Variability and Anthropogenic Factors on Hydrological
Extremes in the Upper Cauca River Valley, Colombia]. (Doctoral dissertation, Universitat Politécnica de
Valencia).

Shuhaida, I., & Shabri, A. (2014). Stream flow forecasting using principal component analysis and least square support
vector machine. Journal of Applied Science and Agriculture, 9(11), 170–180.

Sotomayor, G., Hampel, H., & Vázquez, R. F. (2018). Water quality assessment with emphasis in parameter
optimisation using pattern recognition methods and genetic algorithm. Water Research, 130, 353–362. https:
//doi.org/10.1016/j.watres.2017.12.010

Towner, J., Cloke, H. L., Lavado, W., Santini, W., Bazo, J., Coughlan de Perez, E., & Stephens, E. M. (2020).
Attribution of Amazon floods to modes of climate variability: A review. Meteorological Applications,

Vega Vilca, J. C., & Guzman, J. (2011). Regresion PLS y PCA Como Solución al Problema de Multicolinealidad
en Regresion Multiple. Revista de Matemática: Teoría y Aplicaciones, 18(1), 9. https://doi.org/10.15517/
rmta.v18i1.2111

Wang, C., & Enfield, D. B. (2001). e Tropical Western Hemisphere Warm Pool. Geophysical Research Letters,
Ward, E., Buytaert, W., Peaver, L., & Wheater, H. (2011). Evaluation of precipitation products over complex

mountainous terrain: A water resources perspective. Advances in Water Resources, 34(10), 1222–1231. https:/
/doi.org/10.1016/j.advwatres.2011.05.007

Whitfield, P. H., Moore, R. D. (Dan), Fleming, S. W., & Zawadzki, A. (2010). Pacific Decadal Oscillation and the
Hydroclimatology of Western Canada—Review and Prospects. Canadian Water Resources Journal, 35(1), 1–
28. https://doi.org/10.4296/cwrj3501001

https://doi.org/10.13031/2013.23153
https://doi.org/10.3390
https://biblio.flacsoandes.edu.ec/libros/digital/41444.pdf
https://doi.org/10.1016/j.gloplacha.2018.06.004
https://doi.org/10.1016/j.gloplacha.2018.06.004
https://doi.org/10.1111/j.1529-8817.2003.00754.x
https://doi.org/10.1016/j.watres.2017.12.010
https://doi.org/10.1016/j.watres.2017.12.010
https://doi.org/10.15517
https://doi.org/10.1016/j.advwatres.2011.05.007
https://doi.org/10.1016/j.advwatres.2011.05.007
https://doi.org/10.4296/cwrj3501001

