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Abstract: e purpose of this work was to investigate the
flow of two-phase fluids via the Buckley-Leverett equation,
corresponding to three types of scenarios applied in oil
extraction, including a diffusive term. For this, a weighted
essentially non-oscillatory scheme, a Runge-Kutta method and
a central finite difference were computationally implemented.
In addition, a numerical study related to the precision order
and stability was performed. e use of these methods made it
possible to obtain numerical solutions without oscillations and
without excessive numerical dissipation, sufficient to assist in
the understanding of the mixing profiles of saturated water and
petroleum fluids, inside pipelines filled with porous material, in
addition to allowing the investigation of the impact of adding
the diffusive term in the original equation.

Keywords: Numerical methods, Immiscible two-phase fluid,
Petroleum flow.

Resumen: El propósito de este trabajo fue investigar el flujo
de fluidos bifásicos a través de la ecuación de Buckley-
Leverett, correspondiente a tres tipos de escenarios aplicados
en la extracción de petróleo, incluyendo un término difusivo.
Para ello, se implementaron computacionalmente: un esquema
esencialmente no oscilatorio ponderado, un método de Runge-
Kutta y un esquema de diferencias finitas centrado. Además,
se realizó un estudio numérico relacionado con el orden de
precisión y estabilidad. El uso de estos métodos permitió obtener
soluciones numéricas sin oscilaciones y sin disipación numérica
excesiva, suficientes para auxiliar en la comprensión de los
perfiles de mezcla de agua saturada y fluidos derivados del
petróleo, en el interior de tuberías llenas de material poroso,
además de permitir la investigación del impacto de sumar el
término difusivo en la ecuación original.

Palabras clave: Métodos numéricos, Fluido bifásico inmiscible,
Flujo de petróleo.

I. INTRODUCTION

e technological advances achieved aer the Industrial Revolution, followed by the development of
equipment dependent on energy sources from petroleum, made the oil industry reach a crucial role in the
world economy. As it is an exhaustible natural source and a potential pollutant, if disposed of in an erroneous
way, the efficiency in the extraction process and the detailed understanding of the phenomena involved
become indispensable for the challenges of delivering a product inserted within a clean economy.
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A central problem in this sector is the displacement of petroleum through pipes filled with a porous
medium, characterized by the injection of another fluid (saturated water) to help maintain the flow inside the
tube. In this sense, a mathematical model used to describe the flow of two-phase incompressible fluids is the
classical Buckley-Leverett equation [1]. In this work, the authors obtained solutions considered unrealistic
due to the appearance of discontinuities, indicating the need for studies on the propagation of singularities.

Since then, different researchers started to investigate numerical solutions to the original Buckley-Leverett
flow equation. e characteristic of non-linearity of the partial differential equation enables the use of
numerical methods and computational techniques, in an attempt to find approximate solutions without
spurious oscillations or excessive numerical dissipation.

Fayers and Sheldon [2] used a finite difference scheme for the partial differential equation for flow two-
phase incompressible fluids. In [3], numerical methods dependent on Riemann solvers were applied to follow
the discontinuities evolution (shock waves). However, this procedure requires the calculation of propagation
velocities at each point of the established grid.

Currently, experiments in laboratory of two-phase flow in porous medium reveal complex profiles that
include fluid infiltrations modelled by diffusive and dispersive terms, which suggest modifications to the
classical Buckley-Leverett equation [4].

Central schemes of finite volume were used by [5] and a fully space-time mixed hybrid finite element/
volume discretization was developed by [6], both to solve the modified Buckley-Leverett equation.

In preliminary studies, Garcia and Silveira [7] investigated a fih-order weighted essentially non-
oscillatory scheme applied in the classical Buckley-Leverett equation. Continuing the research, in this work
the authors began to evaluate the addition of a diffusive term.

In this way, the objective of this paper was to apply a weighted essentially non-oscillatory scheme, coupled
to a three-stage Runge-Kutta method and a central finite difference scheme in the discretization of the
Buckley-Leverett equation with diffusive term and obtain numerical solutions capable of representing the
temporal evolution starting from three initial scenarios, represented by discontinuous functions such as
Heavise step, barrier and well rectangular. In addition to carrying out a study on the impact of the diffusive
term on the numerical solution of the classical Buckley-Leverett equation. e modeling of the phenomenon
under study will be explained in Section 2, the numerical methods used are in Section 3 and, finally, in Section
4, the results achieved regarding the evolution of the mixture between saturated water and oil are shown. e
computational implementation was carried out in Octave, with our own codes.

II. MATHEMATICAL MODELING

Currently, a problem of global interest is the extraction of petroleum underground through a tube filled
with a porous medium. Aer drilling the soil to the underground oil reservoir, a certain amount is drained
due to the high pressure that the oil is found, but as the extraction progresses, there is a decrease in pressure
with consequent interruption of the flow, still leaving a lot of petroleum in the subsoil. A standard method
subsequent to the initial extraction is to pump water into rest oil reservoir to force the continuation of
extraction. In this case, the fluid is two-phase, oil and water, and the flow is restarted in the porous medium
consisting of rock or sand.

e mathematical modeling consists of representing the oil one-dimensional flow through the tube filled
with porous material, by water pumping [8]. Such a model was initially proposed by Buckley and Leverett,
1942 [1], in studies on the flow of two-phase incompressible fluids in porous media.

Let  be the fraction of saturated water and  the fraction of oil contained in a pipe filled
with a porous material. Such fluids are essentially incompressible, which ensures that the total flow between
the pipe ends is equal to any smaller portion of the pipe.
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In this way, in regions of the tube where  (pure oil) or q=1 (pure water), the velocities are constant
and distinct, but when  , the difference between the surface tensions of fluids causes them to move
and mix. Buckley and Leverett proposed a model in which the rate of change of  over time (  ) is described
by the following conservation law:

(1)

in which  is the water flux,  represents the porosity of the medium and is

 the oil flux,with . Equation (1) models a flow from le to right, in which the tube thickness
does not influence the dynamics in question.

e reestablishment of the oil flow, from le to right, can be done by filling part of the pipe on the le with
saturated water, allowing the resumption of oil extraction. An initial condition for modeling that procedure
is the following conservation law:

(2)

Another situation that can occur is, aer an injection of water, the flow is restarted and a second oil
portion enters the pipeline, soon aer the interruption in the supply of saturated water. is is the desired
circumstance, when only an amount of water injected is enough for the continuity of the extraction. e
condition to represent that scenario is the conservation law:

(3)

e third situation considered arises when following the injection of water, a small amount of oil is
extracted and then there is a new interruption of flow, making it necessary to inject more saturated water
aer a small amount of oil is extracted. So,

(4)

e three situations represented mathematically by the initial conditions, in (2)-(4), have the flow
described by (1).

Considering the spatial domain  , the boundary condition on the le was of the Dirichlet type and on
the right of the radiation type, that is, when the dynamics reach the boundary, the flow simply goes through
the boundary, is not being affected by the edge.
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Adding the effects of infiltration in porous media, van Duijin, Peletier, and Pop [9] proposed the following
modification to (1):

(5)

in which # is a diffusibility coefficient and κ is a dispersive coefficient. As one of the objectives of this work
is to observe the effect of diffusion in the Buckley-Leverett equation (1), it was considered that  , so
the dispersive term was neglected.

e choice of numerical methods to solve (1) and (5) is essential, as a numerical scheme that has a high
degree of numerical dissipation can stand out and mask the real effect of the diffusive term of (5), impairing
the interpretation of the results.

III.Numerical Methods

Choosing a numerical method requires care that depends on the differential equation and the initial
conditions imposed by the model under study. e discontinuities of the functions defined by (2), (3) and
(4) can evolve to excessive dispersion (oscillation) and/or numerical dissipation, harming the quality of the
numerical solution. us, for this work, a weighted essentially non-oscillatory scheme (WENO-5 method)
was adopted for spatial discretization and the third-order Runge-Kutta TVD method (Total Variation
Diminishing) was assumed for temporal discretization.

A. Non-oscillatory schemes and WENO-5

e essentially non-oscillatory (ENO) schemes proposed by [10] and [11] proved to be efficient in terms
of decreasing numerical dissipation, in addition to avoiding oscillations in the discontinuity regions of the
solutions. One important properties of these methods is to determine the smoothest stencil among the
options, in order to preserve high order of accurate.

In general, to approximate the flow a rth-order ENO scheme selects the smoothest stencil among r
possibilities [12]. On the other hand, the weighted essentially non-oscillatory (WENO) schemes make a
convex combination of all stencils, for the numerical flow approximation. A weight is designated to each
stencil, describing its contribution portion to the process.

e weights are defined by optimal weights in smooth regions, while maintaining the high order of
accuracy. In non-smooth regions, weights close to zero are assigned for stencils that contain discontinuities
[13].

e WENO method technique is based on the flow definition of the ENO schemes, considering a one-
dimensional conservation law . e spatial operator that approximates  in  is

(6)

in which is the spatial discretization size and  is the numerical flux [13].
e r stencils are denoted by  ,  , of the form conservation law:
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in which defines the amount of points of  , that will be applied to calculate the value of . erefore,
a 3rd-order ENO scheme ( ) is going to have:  , , described by  , which results in

 for k=0,  , for k=1, and  for k=2.
ENO schemes approximate  through a polynomial interpolation at the points of each stencil [13] and

[14]. is approximation is given by

(7)

in which

Let  be a smooth function. e average approximation of  in cell  is defined by:

where .
To obtain the constants  in (7), consider the primitive function of  defined by . e value

of  is:

It means that, once the average approximations of the cells  are known, then  at the boundary of cell
 are also known. us, the constants  are determined by interpolating  by a  degree polynomial 

, at most. erefore, approximation is given by:

(8)

in which  are obtained from the Lagrange interpolating polynomial [14], with the data in Table I.

TABLE I.
COEFFICIENTS
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A rth-order ENO scheme leads to a (2r-1)th-order WENO scheme, so a 3rd-order ENO results to a 5th-
order WENO. As mentioned, in the WENO method, for each possible stencil  , , a weight 
is assigned and these are used to calculate the numerical flux:

(9)

e weight  for the stencil  is defined by given

and 
Taking p=r, the coefficients  are optimal values to determine  [14]. e term  is an indicator of

smoothness and for  we have:

is measure was introduced by [13], with the aim of achieving high accurate for the case where . Note
that as  increases, the smoothness decreases and, consequently,  becomes close to zero as does , meaning
that a weight close to zero will be assigned to non-smooth solutions.

B. ird-order Runge-Kutta TVD

Once the spatial discretization is concluded, a method for temporal discretization that maintains the non-
oscillatory characteristics achieved is necessary.

Numerical methods belonging to the TVD class (Total Variation Diminishing) have the property of
avoiding oscillations that are not typical of the phenomenon under study [8]. A good alternative is the
high-order Runge-Kutta TVD methods, which were developed by [12] in research related to efficient
implementations for ENO's schemes.

A Total Variation Diminishing (TVD) technique has the following definition: if, for any data set  , the
values  computed satisfy  , where

is the total variation. In this work, a third-order Runge-Kutta TVD (RK3-TVD) method was chosen,
whose expressions are given by
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(10)

in which  is the spatial operator of differential equation.
e WENO and RK3-TVD methods numerically solve the classical Buckley-Leverett equation. To

discretize the diffusive term of the modified Buckley-Leverett equation, we use a central finite difference
scheme.

C. Fourth-order central finite difference scheme

Once there are at least two ways to numerically add the term in the conservation law: one is to discretize the
diffusive term in the flux context [15], given by:

(11)

and the other in the finite difference context [5], which

(12)

In this work, both discretizations were performed, as for the interpretation of the results there were no
significant differences between them, we selected (12) to keep in our codes, is that, the fourth-order central
finite difference scheme (CFDS-4). We use a central finite difference scheme.

D. Numerical study of the methods

e numerical study of the WENO-5 method makes it possible to verify its convergence order (which
is the number of significant algharisms that are correct when the solution is obtained), that is, it allows
the computational verification of the consistency of the method. For numerical simulations, consider the
function, , for  and the values for the spacing .

Asymptotically, the error made by the approximation has a behavior of the form
 , where  is a positive constant independent of  and

 is the order of convergence. us, in the dilog graph, , the error has an approximately linear
behavior and the slope of the line provides the order  of the method. Fig. 1 shows the scatter plot for the
fit of the model, for calculating the order of convergence of the WENO-5 method, whose value obtained
was , that is, a 5th-order.



Raphael de Oliveira Garcia, et al. Essentially non-oscillatory schemes applied to Buckley-Leverett...

PDF generated from XML JATS4R 49

FIG. 1.
Scatter plot for calculating the order of convergence of the WENO-5

e numerical study of the RK3-TVD method was carried out with the aim of verifying the order of
convergence, that is, computing the consistency of the method. For numerical simulations, we consider the
initial value problem , with  , and with the spacings , . e analytical solution
is .

e error for the approximation is obtained following the same procedures for the numerical study of the
WENO-5. us, Fig. 2 shows the scatter plot for the fit of the model, for calculating the order of convergence
of the RK3-TVD method, whose order obtained was α=3.07 (3rd-order).

FIG. 2
Scatter plot for calculating the order of convergence of the RK3-TVD

e numerical study of the CFDS-4 allows to obtain consistency of the method, Fig. 3. For numerical
simulations, consider the function , for  and the values for the spacing .

Estimating the second derivative  of  via CFDS-4, determining the maximum absolute error
for each  , and finding the slope on the dilog graph, we get  (4th-order).
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FIG. 3.
Scatter plot for calculating the order of convergence of the CFDS-4

E. Analysis of stability

To find a relationship between the spacings and , which keep stable a numerical method obtained by
spatial and temporal discretizations via WENO-5 and RK3-TVD, respectively, the linear stability analysis
is applied.

e importance of this relationship is to guarantee the convergence of the approximate solution using Lax
Equivalence eorem [16], which states: for any consistent method to generate a sequence of convergent
approximate solutions, it is necessary and sufficient that the method be stable, that is, a consistent method
is convergent if and only if it is stable.

In this case, the semi-discretization of the solution is represented by the discrete Fourier series in space
[16], so by the superposition principle, it is possible to work with only one term of the series and in this way,
the numerical solution can be represented by:

(13)

with 
We consider that the operator L , defined by a conservation law, is written in the form .

Temporal semi-discretization is performed using the RK3-TVD method. As it is an explicit scheme, the
solution in  is represented by  ,  ,  ,  , where  is the
amplification factor that depends on  and .

us, a spatial discretization coupled with a time discretization will be stable, if the amplification factor
satisfies the following discrete von Neumann criterion,  , . Such a stability condition
establishes an upper bound on , which keeps the method linearly stable. erefore, if the domain of the
spatial variable was discretized by a regular spacing  , the stability condition allows finding a value for the
temporal spacing , which keeps the method stable.
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WENO-5 linearization and stability analysis

Let be a spatial operator of a conservation law described by . We linearize [17],
considering a solution represented by the Fourier series and we substitute it in the conservaation law, we
have the amplification factor given by:

(14)

in which . Equation (14) is represented in the complex plane Fig. 4, varying  from 0 to , black
line.

RK3-TVD stability

For stability analysis of the RK3-TVD method, the polynomial that characterizes the method is
considered, , as the  amplification factor , the boundary of the stability region is

, where , with . Hence, for each value of , a third degree polynomial equation
is defined. Solving the equations for each  in the Octave and selecting the roots with the highest magnitude
for each , we obtain the region of stability represented by the red color in Fig. 4.

So, the computational implementation of the WENO-5 numerical method with RK3-TVD consists of
applying the temporal discretization of the classical Buckley-Leverett equation by (10), with the spatial
operator defined by (6) and (7).

FIG. 4.
Stability region of the RK3-TVD method, in red, compared to stability region of the WENO-5 scheme

CFDS-4 stability

With regard to the stability analysis for this method, the value found in the literature for second-order central
finite difference schemes applied in the heat equation was used as a reference, that is,  [8].
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IV. Simulations

In this section, the simulations for the classical Buckley-Leverett equation (Section IV.A), the modified
Buckley-Leverett equation (Section IV.B) and an analysis of diffusive term (Section IV.C) are shown.

A. Classical Buckley-Leverett equation

e simulations were performed for three scenarios, according to the initial conditions defined in Section
2. For all scenarios, we have  with 128 subintervals, , and , satisfying the stability
condition for all methods, according to Fig. 4. Furthermore,  was assigned to the constant that
characterizes the porous medium, in (1).

e first scenario is represented by the initial condition whose shape is a step, Fig. 5. e numerical solution
obtained aer 256 iterations is in Fig. 6. e comparison of the graphs reveals the emergence of a region
where the fluids mix, between the values of  (pure water) and  (pure petroleum), while the fluid
dynamics develops to on the right.

FIG. 5.
Initial condition of the scenario 1
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FIG. 6.
Numerical solution aer 256 iterations

e second scenario has the barrier function as an initial condition, Fig. 7. In the numerical solution
obtained aer 128 iterations, Fig. 8, it is possible to verify two different profiles of mixture between saturated
water and petroleum, a linear profile and a non-linear profile similar to the first scenario.

Linear mixing is faster than second mixing and Fig. 9 displays the moment when the linear mixture reaches
the non-linear profile. In Fig. 10, the interference of the linear mixture can be noted, that is, there is a decrease
in the peak of the graph, with no region containing only water.

FIG. 7.
Initial condition of the scenario 2
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FIG. 8.
Numerical solution aer 128 iterations

FIG. 9.
Numerical solution aer 278 iterations,
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FIG. 10.
Numerical solution aer 320 iterations,

e third scenario presents an initial condition in the well format, Fig. 11. In the numerical solution found
aer 128 iterations, two mixing profiles similar to the second scenario is obtained, Fig. 12. However, linear
mixing is slower than non-linear mixing, which in turn is reached by the other profile aer 175 iterations,
Fig. 13. Aer 398 iterations, there is the moment when the nonlinear profile is close to the fluid region with
only water, Fig. 14.

FIG. 11.
Initial condition of the scenario 3
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FIG. 12
Numerical solution aer 128 iterations

FIG. 13
Numerical solution aer 175 iterations,
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FIG. 14
Numerical solution aer 398 iterations,

Aer observing the solution profiles of the classical Buckley-Leverett equation for each scenario, the next
step is to consider the addition of the diffusive term and perform comparisons between the solutions.

B. Modified Buckley-Leverett equation

In order to investigate the diffusive term, we considered (5) with  , that is, to (1):

(15)

in which . In the rest, the same scenarios of the Section (IV.A) were adopted, with the same profile
of space and time discretizations. For all simulations in this section, blue color represents numerical solution
obtanied by classical Buckley-Leverett equation and red color represents solutions of the modified Buckley-
Leverett equation.

e first scenario with diffusive term (Fig. 15) reveals that there is more water scattered in the oil than in
the scenario without diffusion. is is noticeable by the fact that the transitions between pure water, mixture
and pure petroleum profiles became smoother.

In terms of execution time, when adding CFDS-4 in the code, the CPU time went from 73.93s to 77.34s,
that is, an increase of 4.6%.

e second and third scenarios have similar behavior to the first scenario. e transitions are smoothed
by the diffusion, increasing the mixing region between water and oil. See Figs. 16 and 17 for second scenario,
and Figs. 18, 19 and 20 for third scenario, where the blue graph represents the numerical solution of the
classical Buckley-Leverett equation and the red graph is the solution obtained from the same equation,
adding diffusive term.

In Fig. 16, there is an intense smoothing close to and such smoothing is maintained as time evolves, Fig.
17. is effect is characteristic of the added diffusion in the classical Buckley-Leverett equation.
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FIG. 15.
Numerical solution aer 256 iterations,

FIG. 16.
Numerical solution aer 128 iterations,
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FIG. 17.
Numerical solution aer 278 iterations,

FIG. 18.
Numerical solution aer 128 iterations
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FIG. 19.
Numerical solution aer 175 iterations,

FIG. 20.
Numerical solution aer 398 iterations,

In the graphs of Figs. 18 and 19, one can see the evolution of two more intense smoothings, one close to
 and the other close to . In Fig. 20, the smoothings are close to x= -0.5 and x=0.6 .

us, we were able to follow the temporal evolution of the mixture between water and oil in two situations,
one where there is only influence of the non-linear advective term (1), and another where there is also a
diffusive term (5).

C. Diffusion effect

e focus of the simulations in this section is to verify the impact of the diffusivity coefficient on the solutions
of the Buckley-Leverett equation. For this, in the three scenarios presented in Sections (IV.A) and (IV.B),
five different values for were used, keeping the final time fixed in each scenario.

For all scenarios, the following colors and values were defined:  (blue color);  (green color);
 (red color);  (black color) and  (magenta color).
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For the first three values of , the relationship between the spacings was  and for the last two values,
it was necessary to define  to keep the numerical methods stable.

With the final time of  for scenario 1, Fig. 21 shows the numerical solution for the five values of  .
It is noticed that the closer the  value is to zero, the more the solution profile resembles the classic Buckley-
Leverett solution, and as the  value increases, the more the solution is influenced by diffusion, spreading each
time plus the mixture of water and oil in the pipeline, represented by the interval  .

On the scenario 2, Fig. 22, and scenario 3, Fig. 23, follow the same behavior of the increase in the mixture
spreading, as we increase  the value, observed in scenario 1 (Fig. 21). In both scenarios, the final time was

.
With essentially non-oscillatory methods, which have low numerical dissipation, it was possible to vary

the diffusibility coefficient and analyze its impact on the solution of the Buckley-Leverett equation, Figs. 21,
22 and 23.

FIG. 21.
Diffusion effect on the scenario 1

FIG. 22.
Diffusion effect on the scenario 2



Latin-American Journal of Computing, 2024, vol. 11, no. 1, January-June, ISSN: 1390-9266 1390-913...

PDF generated from XML JATS4R 62

FIG. 23.
Diffusion effect on the scenario 3

V. CONCLUSION

In this study, the WENO-5 and RK3-TVD methods were approached, together with a numerical study on
the order of convergence of each method, as well as a stability analysis. e methods were applied to the
classical Buckley-Leverett equation in order to investigate the temporal evolution of three real scenarios,
which may occur during petroleum extraction by injection of saturated water.

e simulations showed mixtures with linear and non-linear profiles due to discontinuities in the initial
conditions of each scenario. It is important to note that during the transitions between the profiles there
were no oscillations of the numerical solutions or excessive dissipation, indicating that the combination of
the WENO-5 and RK3-TVD methods, within the stability condition, provides solutions sufficiently close
to the analytical solution.

By adding the diffusive term in the Buckley-Leverett equation, we use the finite difference scheme to
discretize it and evaluate the impact of diffusion on the solutions of the three flow scenarios studied. With
the methods applied, we were able to vary the parameter and observe that the lower its value, the numerical
solution approaches the classical Buckley-Leverett solution, and the higher the value of , the more the
mixture between water and oil is spread through the pipeline, smoothing the transitions between regions
containing water, mixture and petroleum.
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