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Abstract: Fracture mechanics is the mechanical approach to
fracture processes, which emerged due to limitations in applying
traditional concepts of Mechanics of Materials to predict the
behavior of cracked materials. Analytical problem solutions
with this approach may be unattainable, so it is necessary to
use numerical modeling, such as the finite element method.
However, the use of more advanced soware that solves
engineering problems numerically is limited by its high cost.
FEniCS is an open-source computational platform that solves
partial differential equations by the finite element method.
us, from a tutorial for this computational platform, this work
proposes to reproduce a classic problem of linear elastic fracture
mechanics, based on the validation of a comparison of a linear
elastic problem with the commercial soware ANSYS ®. With
the help of the provided tutorial, a code was built to model a
three-point bending test. Implemented with the aid of Gmsh
and Paraview, it was possible to obtain satisfactory results and to
show that FeniCS is a powerful and accessible tool for solving
fracture mechanics problems.

Keywords: Fracture Mechanics, Numerical Modeling, FEniCS,
Finite Elements.

I. INTRODUCTION

e Finite Element Method (FEM) is an approach to solving partial differential equations using numerical
techniques in which a continuous domain is discretized into finite elements called mesh. With the
advancement of technology and, consequently, computational power, more advanced engineering problems
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have become simpler to solve. is is due to the fact that analytical solutions can be complex and even
unreachable, and the error achieved in numerical solutions is considerably acceptable [1].

In general, the use of advanced FEM-based soware is restricted to companies and some teaching
institutions, as it is the case with ANSYS ® [2]. On the other hand, open-source programs, such as the
FEniCS Soware [3], which is free, are used more widely due to their availability and ease of access. However,
they tend not to have a graphical interface, unlike commercial soware, which makes the use of pre- and
post-processors essential for visualizing the solution. Even for a simple computational solution approach,
the development of the finite element method can be complex, as it requires knowledge about tensor and
variational calculus in some cases. e FEniCS [3] soware, for example, uses these principles and, based
on programming knowledge and the library itself, it is possible to solve partial differential equations using
a variational approach. erefore, this work proposes to present a numerical modeling of a linear elastic
problem and two of fracture mechanics, presenting a preliminary comparison with ANSYS® for the linear
elastic problem.

A. Fracture Mechanics

Fracture mechanics is the mechanical approach to fracture processes that emerged due to limitations applying
traditional concepts of Mechanics of Materials to predict the behavior of materials in the presence of cracks.
It was developed and founded aer the 2nd World War [4] and is widely used in structural contexts in
the areas of civil, mechanical, and metallurgical engineering [5-7]. For materials with brittle behavior, the
linear elastic fracture mechanics (LEFM) approach is used, while for materials with ductile behavior, the
elastoplastic fracture mechanics (EPFM) is used [4,8].

For example, in industry, a component may have such a high cost that, depending on the conditions and
its integrity, it is more viable to have knowledge about fracture mechanics and continue using it with cracks
to perform an exchange, which results in a complete pause of an operation. Alan Arnold Griffith studied
the behavior of an elliptical hole when external stress is applied and established a thermodynamic model
for crack propagation [8]. Griffith concluded that the strength of a material is not only linked to chemical
bonding parameters but also to the existing defects. erefore, it was realized that defects in the material are
factors that intensify the applied stress, making it susceptible to exceeding the yield strength of the material
and causing a rupture, which is the basis of fracture mechanics [4]. With this, a good characterization of the
material must also have experimental parameters of the LEFM, such as the fracture toughness (K IC) and
the critical energy release rate (Gc), for example. Fracture toughness is independent of size, geometry, and
loading levels for a material with a given microstructure and is the main obtained experimentally properties
related to fracture mechanics [8].

II. METODOLOGY

A. Numerical Modeling

e main concept addressed in the FEM is the discretization of a continuous domain into finite geometric
elements, in addition to the use of polynomial interpolation to determine the results in the region inside
the elements [1]. ese elements form a mesh, and each node has a displacement u and a stress σ ,
which are represented in a linear system and determined through the variational calculus. e stress and
strain of the solid are expressed by tensors, which are, by definition, mathematical entities that produce
a linear transformation in vectors, transforming them into different vectors [9]. Tensors are represented
in Equations (1) and (2), where u , v , and # are the horizontal, vertical, and transverse components of
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infinitesimal displacement. e strain tensor can also be defined as ε=sym#u , that is, the symmetric gradient
of u. Both mathematical entities σ and ε have Cartesian x, y, and z components.

(1)

(2)

Mesh refinement generates more accurate results that are closer to the analytical ones, but there is a
computational limit to be respected, which is analyzed through a convergence test, where the best results are
sought with the minimum possible elements [9]. In the formulation involving the FEM applied to fracture
mechanics, some parameters must be provided to the program, such as Young’s modulus (E), Poisson’s
coefficient (#), and the critical energy release rate ( Gc). Aer providing the input data, using concepts of
variational calculus, it is possible to obtain the results, which are observed through a post-processing soware.

Simulation allows engineers to use basic principles of modeling, physics, mathematics, and computer
science to evaluate design performance in different scenarios. us, for the development of Engineering, it is
important to analyze solutions via soware to ensure that the result obtained is adequate and that it meets
the functional needs of a project [10].

1. Numerical modeling for FEniCS soware

A. Linear elasticity

Numerical modeling is used for a linear elasticity problem in a plane strain state [9] shown in Fig. 1, based
on the FEniCS library [11]. e problem consists of a three-dimensional plate 200 mm long, 500 mm high
and whit thick e = 10 mm subjected to a load. Acting field forces are disregarded and a plane strain state is
defined. For the Young’s modulus of the material, 200 GPa was adopted and, for Poisson's coefficient, 0.3.
e problem has the following governing equations for a Ω domain.

(1)

(2)

(3)

where T is the applied stress, represented by the ratio between the uniformly distributed load at the
base of the bar and the thickness, Ⅰ is the three-dimensional identity matrix, and μ and λ are the Lamé
constants, which depend on the Young’s modulus and the Poisson’s coefficient of the material. Considering
the principle of virtual work, one must find values of u that satisfy the weak formulation [9].
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(4)

where u and p are the trial and test functions, respectively, and V is the vector field containing them.
In this example, second-degree Lagrange polynomials are defined for the interpolation between nodes. e
vertical face is fixed, and the load F is uniformly applied in the negative y-direction. e mesh was built using
a function from the FEniCS library, containing 48000 tetrahedral elements with 5 mm on each side.

FIG. 1.
Representation of geometry (a) and boundary conditions (b)

B. Fracture Mechanics

Numerical modeling for the fracture mechanics problem was proposed by [12], using models by [13], with
contributions by [14]. It is considered an elasto-static body with a discontinuity, which occupies a domain
Ω# R2. e Dirichlet and Neumann boundary conditions [9] are imposed by ΓD and ΓC. In the case of a
discrete fracture mechanism, the crack is represented by a discontinuous surface ΓC. e variable that models
crack propagation is ϕ#[0,1]. When it assumes a null value, the material is intact, and when it assumes a
unitary value, there is a complete fracture. e crack size is controlled by a variable ℓ, a length scale parameter
inherent to the model and which depends on the developed mesh refinement [12-15], called characteristic
length. e approximate crack surface energy is defined as:

(5

Adding the Bulk energy to Eq. (5) the total potential energy of the solid (Ψ) is obtained as:
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(6)

where ψ(ε) is the strain energy density of the solid, in terms of the Lamé parameters and the strain tensor,
represented in Eq. (2), whose mathematical expression is:

(7)

Applying Gauss's theorem in Eq. (7) the following field equations are obtained, with arbitrary values for
the kinematic variables δu and δф.

(8)

(8)

e natural boundary conditions for a traction T are:

(9)

(9)

where n is the normal vector to the surface Γ. With this, the constitutive equations and the boundary
conditions are given. e procedure now consists of implementing the finite element method. e main
objective is the resolution of the system of equations (8) with the boundary conditions expressed by Eqs. (9.1)
and (9.2). However, it is necessary to use the finite element method, discretizing the continuous domain.
Equation (8.2) is modified to:

(10)

where H+ is called the variable storage (or history) field, which changes with time, expressed
mathematically as:

(11)

and ψ+ is the variable strain energy density of the solid, defined as:

(12)
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where K is the Bulk modulus, which can be expressed in terms of the Young’s modulus and the Poisson’s
coefficient [9]. Finite element modeling uses a weak, or variational, formulation that uses dimensional trial
(#, #) and test (#, #) spaces, which contain the trial (u, #) and test (p, q) functions, respectively. A discrete
space (#) is also defined around the mesh that contains the phase field variable (ф) and the displacement field
(u). All spaces have a dimension d.

(13)

(13)

In the reformulation of the system of constitutive equations, applying the Bubnov-Galerkin procedure,
remote tractions and field forces are disregarded, making it:

(14)

(14)

2. Numerical modeling for ANSYS ® soware

In order to validate the results obtained by FEniCS for the linear elasticity problem (Section II.1.a), a
numerical model was implemented in the Ansys ® soware, version 2022. e material used in the modeling
has the same properties as in Section II.1.a. As it is a three-dimensional model, a load of 0.1N/mm² ( Pressure
type ) was applied to the lower face of an xz plane of the structural element in the vertical direction with
a downward direction ( -y ). Opposite the load application plane, all nodes were restricted to translation,
which represented a crimp. e mesh illustrated in Fig. 2 records the geometry containing 45125 nodes and
8000 cubic elements.
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FIG. 2.
Mesh result obtained in ANSYS ® for linear elasticity problem

III. RESULTS AND DISCUSSION

A. FEniCS soware validation

With the help of ANSYS ®, a kind of FEniCS validation was carried out, solving the same linear elasticity
problem and comparing the results. Fig. 3 shows the bar displacements obtained by ANSYS ®, and Fig. 4
exposes those obtained by FEniCS, both in the y direction. Note that there is a qualitative similarity regarding
the vector field represented by the scale. e maximum supported stresses are found on the crimped face
of the bar, opposite to the force application face, and, for both cases, a value of 0.1MPa was obtained. e
maximum deformation obtained analytically is -2.500#10-4 mm. e comparison between FEniCS and
ANSYS ® for the linear elastic problem resulted in errors of less than 0.6%, as shown in Table I. erefore,
free open-source soware can be operated safely.
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FIG. 3.
Result of the displacement field obtained in ANSYS ® for linear elasticity problem

FIG. 4.
Result of the displacement field obtained in FEniCS for linear elasticity problem
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TABLE I.
Comparison between ansys and FEniCS maximum deformation

a. Relative to the analytical value

B. Application of the phase field method using FEniCS

1. Tensile test with simple pre-crack

Elaborated by [15], the problem to be solved consists of a representation of a fracture mechanics test of a plate
subjected to uniaxial tensile stress that has a pre-crack to simulate a pure fracture in Mode 1, as illustrated in
Fig. 5. In order to reduce the computational time, small geometric proportions were considered, being L=0.5
mm. e code structure of this problem, implemented for this work, followed the tutorial developed by [12].

e mesh was built using the Gmsh preprocessor [16] and has 30546 triangular elements. e material
has a modulus of elasticity E = 210GPa, a Poisson coefficient # = 0.3, and a critical energy release rate Gc =
2.7MPa mm. us, the Lamé parameters λ =121153.8MPa and μ = 80769.2MPa were obtained. A value of
0.011mm was also used for the characteristic length ℓ.
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FIG. 5.
Tensile stress problem in a pre-cracked plate under uniaxial force, adapted from [12,13]

e base of the mesh (y=0) is fixed, and a remote offset of 0.007mm is used as the first iteration. To help
with the code, the value of the phase field variable ϕ for every pre-crack was defined as 1. During the execution
of the code, the necessary number of iterations for convergence of the solution during a given step is provided.
e main results of the analysis are shown in Fig. 6 and Fig. 7. Visualization of crack propagation is easily
observed using the post-processor soware Paraview [17]. Code execution stops at a value determined as a
maximum (t=1.0), at which there has already been catastrophic failure of the material. A change was made
regarding the test loading rate, for reasons of computational power. e red region represents the complete
failure of the material, and the blue shows the initial state (intact).

FIG. 6.
Force-displacement curve for traction problem (a)
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FIG. 7.
Displacement crack propagation u=5,7x10-3 mm

e results obtained are satisfactory and close to the literature, as shown in Table II [12,13,15,18],
although changes have been made to the code and the mesh used has been less refined.

TABLE II.
Comparison between this paper and Literature of Tensile Test’s peak values

a. Relative to literature values

2. ree-point bending test

e following problem consists of a three-point bending test. More details can be seen in [15]. e geometry
and boundary conditions are given in Fig. 8. e mesh was built using the Gmsh preprocessor and has 72768
triangular elements, in which a refinement was performed in the center, where the crack is expected to
propagate [18]. e material has a modulus of elasticity E = 20.8GPa, a Poisson coefficient # = 0.3 and a
critical energy release rate Gc = 0.54MPa mm. us, the Lamé parameters λ =12000MPa and μ = 8000MPa
were obtained. A value of 0.03mm was also used for the characteristic length ℓ, similar to that used in the
literature [13,15].

We start with the same numerical modeling for the traction problem but now with a point force. e point
(0,0) has zero nodal displacements in x and y. At the point (8,0), the shi is restricted to y only. e force
is applied punctually at (4,2). An initial displacement of 0.005mm was defined at the top of the geometry,
changing to 0.00001mm when approaching the failure and returning to 0.005mm aer the failure to follow
the crack in greater detail. Fig. 9 shows the vector field of the phase field variable as a ϕ function of the load
level, with representation like the previous problem. e force-displacement curve is shown in Fig. 10. e
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results obtained are satisfactory and close to the literature, as shown in Table III, even with a variation of
displacements different from that used by the authors to reduce computational costs [13,15,18].

FIG. 8.
Geometry and boundary conditions for three-point bending test, adapted from [13]

FIG. 9.
Phase field for displacements u=0.04 mm (a), u=0.045 mm (b), u=0.056 mm (c), u=0.071 mm (d)
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FIG. 10.
Force-displacement curve for three-point bending test

TABLE III
Comparison between this paper and Literature of ree-point Bending Test peak values

a. Relative to literature values

IV. CONCLUSIONS

is work proposes the implementation of classic linear elastic fracture mechanics problems based on a
tutorial and examples found in the literature, with the help of Gmsh and Paraview. e comparison between
the FeniCS and ANSYS soware for the elastic linear problem obtained a satisfactory result, with an error,
on average, of less than 0.6%. e traction problem presented an error, on average, of approximately 2.9%
for the peak value when compared to the literature. e three-point bending problem, on the other hand,
presented an error, on average, of approximately 9.7% for the peak value in comparison with the same source.
us, it is concluded that FEniCS can be used for academic purposes both for solving classic problems of
Strength of Materials and MFLE. Furthermore, this tool, together with Gmsh and Paraview, provides users
with advanced approaches to learning engineering problem-solving



Caio César Prates Martins, et al. Numerical Modeling For Fracture Mechanics Problems Using The Ope...

PDF generated from XML JATS4R 43

References

[1] T. R. Chandrupatla and A. D. Belegundu, "Elementos Finitos," 4° ed., Pearson, 2014.
[2] Ansys ® [Ansys Student], Version 2022, Ansys, Inc.
[3] M. S. Alnaes et al., "e FEniCS Project Ver. 1.5," Archive of Numerical Soware, vol. 3, 2015.
[4] T. L. Anderson, "Fracture Mechanics - Fundamentals and Applications," 2nd Edition, CRC Press, 1994.
[5] K. Majidzadeh, E. M. Kauffmann, and D. V. Ramsamooj, "Application of Fracture Mechanics in the Analysis of

Pavement Fatigue," in Association of Asphalt Paving Technologists Proceedings, pp. 227-246, 1971.
[6] G. Clerc, A. J. Brunner, P. Niemz, and J. Kuilen, "Application of Fracture Mechanics to Engineering Design of

Complex Structures," in 1st Virtual European Conference on Fracture, Procedia Structural Integrity, vol. 28,
pp. 1761-1767, 2020.

[7] G. J. Neate, G. M. Sparkes, H. D. Williams, and A. T. Stewart, "Application of Fracture Mechanics to Industrial
Problems," in Fracture Mechanics, Pergamon, pp. 69-90, 1979.

[8] J. A. L. Rocha, "Termodinâmica da Fratura: Uma Nova Abordagem do Problema da Fratura nos Sólidos,"
EDUFBA, 2010.

[9] P. T. R. Mendonça and E. A. Fancello, "O Método dos Elementos Finitos Aplicado à Mecânica dos Sólidos," 1st
Edition, Orsa Maggiore, 2019.

[10] Ansys ®, "Simulation Is a Superpower," Available: https://www.ansys.com/company-information/simulation-is-
a-superpower. [Accessed: May. 14, 2023].

[11] H. P. Langtangen and A. Logg, "Solving PDEs in Python: e FEniCS Tutorial 1," Simula Research Laboratory
and Department of Informatics, University of Oslo, 2017.

[12] E. M. Pañeda and H. Hirshikesh, "Phase Field Fracture Implementation in FEniCS," ResearchGate, 2020.
[13] M. Ambati, T. Gerasimov, and L. De Lorenzis, "A Review on Phase-Field Brittle Models of Fracture and a New

Fast Hybrid Formulation," Comput Mech, vol. 55, pp. 383-405, 2015.
[14] J. Amor, J. Marigo, and C. Maurini, "Regularized Formulation of the Variational Brittle Fracture with Unilateral

Contact: Numerical Experiments," Journal of the Mechanics and Physics of Solids, vol. 57, pp. 1209-1229, 2009.
[15] C. Miehe, M. Hofacker, and F. Welschinger, "A Phase Field Model for Rate-Independent Crack Propagation:

Robust Algorithmic Implementation Based on Operator Splits," Comput Methods Appl Mech Eng, vol. 199,
pp. 2765-2778, 2010.

[16] C. Geuzaine and J. Remacle, "Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre- and Post-
Processing Facilities," International Journal for Numerical Methods in Engineering, vol. 79, pp. 1309-1331,
2009

[17] J. Ahrens, B. Geveci, and C. Law, "Paraview: An End-user Tool for Large Data Visualization," in Visualization
Handbook, Elsevier, pp. 978-0123875822, 2005

[18] H. Hirshikesh, S. Natarajan and R. K. Annabattula, "A FEniCS Implementation of the Phase Field Method for
Quasi-Static Brittle Fracture," Frontiers of Structural and Civil Engineering, vol. 13, 2019.

https://www.ansys.com/company-information/simulation-is-a-superpower
https://www.ansys.com/company-information/simulation-is-a-superpower

