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Abstract: Due to their supporting function, beams are one
of the main elements in structural projects. With the intense
technological development in the field of nanotechnology,
beams at micro- and nanoscales have become objects of intense
study and research interest, see for example [8]. In this approach,
we analyze numerically the inverse problem of identifying the
stiffness coefficient in micro-nano-beams as a function that
implicitly depends on the fractal media map for the continuum
from strain measurements. Such a problem is unstable with
respect to noise in strain measurements, which is inherent in
practical problems. We introduce the equations that compose
Landweber's iterative regularization method as a strategy to
obtain a stable and convergent approximate solution with
respect to the noise level in the measurements. We show
some scenarios with simulated data for identifying the stiffness
coefficient for different noise levels in measurements and for
different coefficient of transformation of fractal medium. e
results found numerically show that Landweber's method is
a regularization strategy for the problem of identifying the
stiffness coefficient in micro/nano-beams.

Keywords: micro, nano-beams, inverse problem, fractal media,
Landweber’s method.

I. Introduction

Every day, we are surrounded by beams. ey are the fundamental structural elements that carry vertical
loads. ough beams are traditionally used to describe building or civil engineering, beams can be found in
all existing structures as structural elements, including machine frames, bones, carbon nanotubes, molecular
chains, and other mechanical or structural systems. In these structures, the size-scale is paramount for a
precise description of the mechanical properties of the beam [9].

In continuum mechanics, the analysis of movements and deformations is determined by the hypothesis
that the medium is composed of matter in a homogeneous way. is theory ignores the existence of voids
formed when molecules and atoms are not evenly distributed. e question that arises in micro- and
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nanoscale analysis is whether conventional models of continuum mechanics, such as Euler-Bernoulli and
Timoshenko, may not be appropriate, given that such approaches do not take into account the scale factor in
their models, see for example [9]. To address the scale issue, some non-classical continuum theories, as well as
theories incorporating non-integer order derivatives in the [6, 7, 8, 9] models, have been investigated. Models
with fractional dynamics have been shown to be more suitable for describing the properties of various real
materials, e.g. [6], and thus have aroused the interest of engineering research.

In [7] an overview of the modeling of fractal media through the theory of continuous mechanics is
presented using the ideas proposed in [8]. is theory consists of describing the laws of equilibrium for fractal
media using fractional integrals. Using a map from the fractal to the continuous medium, those fractional
integrals are rewritten as integrals in conventional Euclidean space. e interesting thing about this approach
is that the essential condition of continuum mechanics, the separation of scales, can be replaced by the use
of continuum field equations. In Section II, we present the deduction of the Euler-Bernoulli equation for
beams in fractal media, using the techniques proposed in [8]. We also show that the analyzed model has a
unique solution , which is known in the literature as the direct problem for the Euler-Bernoulli beam
model in fractal media.

e main contribution of this work is the numerical investigation of an “inverse problem” for the Euler-
Bernoulli beam model in fractal media. Indeed, the stable identification of the stiffness parameter 
associated with the Euler-Bernoulli equation in fractal media, as described in Section II, from indirect
measurements of the nano (micro)-beam deflection of .

Given that measurements of the nano (micro)-beam deflection  are subject to errors and that the inverse
problems are generally ill-posed in the Hadamard sense [2, 3], the issue of instability in the identification
of the stiffness parameter  due to noise measurements of the beam deflection  necessitates the use
of some regularization strategy. In this contribution, we use the Landweber iterative method (see Section
III), which will be used to numerically demonstrate the stability of the approximations for the identification
coefficient  in Section IV. In Section IV, we will present several numerical tests with varying levels of
noise in the measurements. e presented scenarios demonstrated numerically that the Landweber iteration
obtains stable approximate solutions for the coefficient  under different fractal medium properties.

II. Euler-Bernoulli Equation in Fractal Media

In general, a fractal medium cannot be considered as a continuous medium, as there are points and domains
that are not filled by particles of the medium. ese domains can be called porous. us, the application of
continuum theory to fractal media is not appropriate. To get around this difficulty, [8] proposed the use
of fractional integrals to represent the mass of a region Importar tabla Importar tabla in three-dimensional
Euclidean space E3 tabla as being:

(1)

with
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(2)

where  is the length scale measurement, D is the fractal dimension of mass, and is Euler's Gamma function.
e coefficient  establishes the transformation between fractal and continuous media. e term  tabla
is the infinitesimal element of volume in fractal space, and  is the infinitesimal element of volume in .
However, the proposal of [8] implies that the measure of the fractal dimension in each of the directions of
the medium must be the same. To contour this limitation, [8] proposed an approach in which the measure
of length in relation to each coordinate of the medium is given by:

(3)

where  represents mass density and a fractal dimension in the direction 
Assuming that  is given by the modified Riemann-Liouville integral, that is:

(4)

where  is the total length along  and  is the characteristic length in the given direction, [8] showed
that it is possible to reproduce almost all the known results of the mechanical theory of the continuum, in
addition to allowing to represent more heterogeneous media.

A. One-dimensional fractal medium: the Euler-Bernoulli equation

Assume that we are in Euclidean dimension 1, in the direction. Let dimension  be the dimension of the
fractal structure in which we are immersed, in the direction . en it follows from (3) that the element must
be replaced by:

(5)

Rewriting the balance equations in variational form, with the measure given by (5) and using the
generalized Green-Gauss eorem, see [8], it follows that the Euler-Bernoulli equation in fractal means is
given by:

(6)

wherein
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(7)

is the bending moment with  the stiffness coefficient. In (6) and (7), the operator  is the
Laplacian operator for fractal media, given by:

(8)

where  is the transformation coefficient between the fractal medium and the continuous
medium.

In this work, we will consider (7) with the following boundary conditions:

(9)

corresponding to a cantilever beam.

B. e inverse problem as an equation of operators

To formulate the inverse problem that we are interested in this work, we first need to formulate some
hypotheses for which problem (7) with boundary conditions (9), has a single solution, that is, the direct
problem is well posed.

A1: e stiffness coefficient  and the transformation coefficient  are measurable functions on
that satisfy the condition  and for known constants . e set of coefficients satisfying the
hypothesis A1 will be denoted by Ad in this manuscript and referred to as the admissible set

A1’: e stiffness coefficient and the transformation coefficient besides satisfying A1 have uniformly
bounded  that is, the coefficients belong to the set  where ||.|| denotes the
norm  with  and 

A2:e bending moment 
Consider the vector space

measurable, such that



Latin-American Journal of Computing, 2023, vol. 10, no. 2, July-December, ISSN: 1390-9266 1390-91...

PDF generated from XML JATS4R 100

(10)

with the inner product below

(11)

It follows from the Assumption A1 that the space of functions  with the norm induced by the
inner product (11) is a space of Hilbert. Furthermore, the space  will denotate the Sobolev space
of all functions in , with the derivatives in the weak sence,  also belongs to , and satisfies

. See, for example [1].
In order to prove existence and uniqueness for a solution of the problem (7) with conditions in (9), we

use the theory of weak solution as follows. First, we consider as a weak solution to problem (7) any function
 such that

(12)

for any test function
Lemma 1: Assume that the assumptions A1 and A2 are satisfied. If there is satisfying the problem (7) and

(9), then is a weak solution to the problem (12). Conversely, if is a weak solution to (12), then satisfies (7)
almost always.

Proof: It follows from Hypothesis A1 and A2 that . erefore, from (7) and conditions
(9),  and satisfy (12) (see the Green’s identities in [1]).

Reciprocally, if  is a weak solution to (7), it is, satisfies (12), then boundary conditions (9) for the
problem in (7) are satisfied. Furthermore, as  satisfied (12) by assumption, we have, aer an integration by
parts, that

(13)

erefore, it follows from the density of  in  that , almost everywhere. Hence, by the
Hahn-Banach theorem (see [1]) the result for (13) can be extended to .

Given the Lemma 1, it is possible to prove through the Lax Milgram’s eorem [1] the existence of a
unique solution  that satisfies (12). Indeed, notice that is a weak solution of (7) if and only if  satisfies

(14)
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where  is the bilinear form defined as

(15)

and  is the linear functional given by

(16)

eorem 1: Assuming that the hypotheses A1 and A2 are satisfied, there is a unique solution to (12). As
a consequence of the Lemma 1, there is a unique weak solution to (7).

Sketch of Proof: Following the same ideas in [4], it is possible to prove that the linear functional defined
in (16) is continuous and furthermore that the bilinear form defined in (15) is continuous and coercive
in . erefore, it follows from the Lax-Milgram eorem [1, Corollary 5.8] the existence of a unique
function  satisfying (12).

As a result of eorem 1, it follows that, for any given function , satisfying Assumption A1, the operato

(17)

where  is the unique solution of (7), is well defined.
 is called the forward operator in the theory of inverse problems, see for example [2, 3].

C. e inverse problem

Assume that the functions  and  are known. e inverse problem that we are interested in this work
deals with the identification of the stiffness coefficient  from measurements , with noise level ,
satisfying:

(18)
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of the deflection  solution of (7) with boundary conditions (9). Equivalently, determine  in
the operator equation (17), from the measures  satisfying (18).

Inverse problems, in general, do not have the property of continuous dependence of the measures .
is implies that small perturbations of magnitude  in the measurements can generate large perturbations
in obtaining the solution of the inverse problem of interest, e.g., [2, 3]. As a result, obtaining stable and
convergent solutions with respect to the noise level  requires the use of regularization methods. See for
example [2, 3, 4, 5].

e problem of identifying the stiffness coefficient  in a beam does not have the property of
continuous dependence of the measures , as demonstrated in the case of  in [4, 5]. As a result, the
stable identification of the stiffness coefficient , requires some regularization methods [2, 3]. In this
contribution, we will use an iterative regularization method called the Landweber method [2] to recover the
parameter  in a stable and convergent manner with respect to the noise level . In other words, we will
show numerically that the Landweber iteration (see equation (19)) together with a stop criterion, called the
discrepancy principle (see equation (20)), generates approximate stiffness coefficients , for , with values
that are stable and convergent to , as a function of the noise level in the data . e iterative algorithm is
presented in Section III, while the numerically simulated scenarios for the recovery of the stiffness coefficient

 is presented in Section IV.

III. Landweber’s Iterative Method

e Landweber iteration (Landweber's iterative method) for the identification of the coefficient in (7), is
given by

(19)

where  is a relaxation parameter.  denotes the adjunct of the Fréchet derivative of the
parameter-to-measurement operator , defined in (7). is the initial guess of the iteration (14), that shall
be chosen properly.

Because the data contains  noise, the iterative method must be combined with a stop rule, as mentioned
in [2, 3, 4, 5]. In this work, we use the discrepancy principle's stopping criterion, which states that (19) must
be stopped at the first step  that satisfies

(20)

for some . us, the number of iterations determines the stopping rule of the method.
e numerical implementation to obtain the coefficient  iteratively according to (19) is given by the

following algorithm:
(1) Choose an initial value for  and  satisfying Assumptions A1 and A1', respectively. Choose also

the parameter values 
(2)Add the uniformly distributed random variable  to [0,1] the solution  of the forward problem

to generate the noise data , satisfying 
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3) As long as the iteration (19) is such that  , for , where  denotes the iteration index that satisfies
the discrepancy principle, do the following steps:

(4) Solve the problem with the initial conditions

with the initial conditions

(5) Evaluate the residue

where in  is solution of differential equation calculated in Step (4).
(6) To calculate  , firstly,
(6.1) Solve the differential equation

with finals conditions

(6.2) en, find the adjunct

solving

wherein  is solution of equation obtained in Step (6.1).
(7) Update  wherein 
(8) Go back to Step (3) while the discrepancy principle given by (20) is not reached.
(9) Otherwise, the regularized solution is , where  is deteremined by the discrepancy principle (20).
It is important to mention that, for the calculations of  in Step (6) in the algorithm, it is necessary

to define an auxiliary operator given by
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(21)

for . It is straightforward to show that the operator defined in (21) is linear, bounded and
bijective. erefore, it also has a linear and bounded inverse . e adjunct operator of  is such that

, corresponding the Step (6.1) in the algorithm. Because it is also linear and bounded, its
inverse is given by

(22)

where is the unique solution of the

e equations obtained in Step (6) of the above algorithm are calculated by taking the Fréchet derivative
of the operator  defined in (12) and integrating by parts with respect to the inner product given by
(11). erefore, we obtain

(23)

with  as (22) applied to residue 
Hence, the Steps (6.1) and (6.2) of the algorithm are equivalent to (23).

IV. Numerical Examples

In this section, we use the Landweber regularization method given by (19) to identify the beam stiffness
coefficient , in the fractal media Euler-Bernoulli equation modeled by (7) and (9). In all the simulations
presented below, we use , and the bending moment . Also, we use  as the initial guess
of the Landweber iteration method (19). e finite difference method was used to obtain the numerical
solution  for (7) at points  where  for  points for the simulated scenario of Example 1
and  points for the other simulated scenarios. In all examples, the noisy data  is generated by adding
a random variable , evenly distributed, to the solution  of (7), such that , where
 is the noise level.

e differential equations corresponding to Step (6) of the algorithm were solved using backward Euler's
method to account for the final conditions. e steps of the algorithm resulting from the Landweber method,
presented in Section III, were implemented in Python (version 3.8.5).
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Example 1: e simulated scenario corresponding to this first example consists in identifying the stiffness
coefficient  in the fractal medium Euler-Bernoulli beam where the fractal medium transformation
coefficient is .

Fig. 1 compares the coefficients  and  recovered by the Landweber method given by (14) for
noise levels  and , respectively. e simulations were performed on a mesh with 
points. e numerical results shown in Fig. 1 demonstrate that Landweber's iterative method produces stably
approximate solutions  for the stiffness coefficient , as a function of the noise level .

FIG. 1.
Identification of the stiffness coefficient a*(x) corresponding to Example 1

In the simulations presented in Fig. 1, the reconstructed coefficient  is obtained by using the
discrepancy principle, for with the iteration is stopped aer  iterations for the noise level .
While, the iteration is stopped aer  and , for the noise level of  and , respectively.

In the following simulated scenarios, we will consider the identification of a non-constant stiffness
coefficient , as a way of evaluating the performance of Landweber's iterative method in more unfavorable
scenarios

Example 2: e simulated scenario of this example corresponds to the identification of the stiffness

coefficient  , from noise measurements of the fractal Euler-Bernoulli beam equation (6), where
the fractionality of the medium is given by .

e results for noise levels of  and  are shown in Fig. 2. e mesh was chosen
uniformly with  points. is figure show that the Landweber iteration with the stopping criterion given
by the discrepancy principle in (20) produced stable and satisfactory approximations  for the non-constant
coefficient .

FIG. 2.
Identification of the stiffness coefficient for Example 2

e principle of discrepancy given in (20) is reached for the scenarios of this example with  , 
and , for the simulated noise levels for , and , respectively.

In the simulated scenarios that follow, we present approximate solutions for recovering the coefficient 
as in Examples 1 and 2, where the fractionality of the medium  is distinct.

Example 3: e simulated scenario of this example corresponds to the Euler-Bernoulli fractional media
beam, where the coefficient of fractionality is given by . e simulations for a noise level of

 and , are presented in order to recover the coefficient  , in Fig. 3.
Fig. 3 shows the coefficient  recovered by the Landweber method given in (19) for different noise levels

 and  . e simulation was performed on a mesh with  points.
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FIG. 3.
Identification of the constant stiffness coefficient for Example 3

In Fig. 3, the reconstructed coefficients  for different noise levels  and  satisfied
the discrepancy principle, respectively, with  and .

Example 4:e simulated scenario of this example corresponds to the Euler-Bernoulli fractional
media beam, where the coefficient of fractionality is given by . e simulations for noise level

 and  are presented in Fig. 4 in order to recover the coefficient 
Fig. 4 shows the coefficient  recovered by the Landweber method given in (19) for different noise levels

and  respectively. e simulation was performed on a mesh with  points.
e principle of discrepancy given in (20) is reached of this example for the simulated noise levels, where

for for and for .

FIG. 4.
Identification of the stiffness coefficient for Example 4

e numerical results shown in Examples 1, 2, 3, and 4 demonstrate that Landweber's iterative method
terminated with the discrepancy principle produces stably approximate solutions  for the simulated

scenarios with the stiffness coefficient  and  for different proposed noise levels with
distinct fractionality transformation coefficient .

It is worth noting that the discrepancy principle in Examples 3 and 4 is stretched aer more iterations
than previous examples, which is possible due to the polynomial degree of the coefficient .

It will be investigated in future contributions.

V. Conclusions

In this paper, we present a fractal mechanics-based version of the Euler-Bernoulli equation for beams at
micro- and nanoscales, as well as the inclusion of the parameter  responsible for characterization of
the fractionality of scales. We investigated the inverse problem of identifying the Euler-Bernoulli equation
coefficient  from measures of noisy data corresponding to the bending of a fractal media beam. As this
problem is ill-posed in the Hadamard sense, we numerically analyze the Landweber iteration method as a
regularization, in order to obtain stable and convergent solutions for the parameter of interest in terms of
the noise level. We present some numerical examples for different noise levels in the recovery of constant and
non-constant stiffness coefficients . In addition, we performed tests with two different functions for the
fractal parameter , evaluating the performance of the method in these cases as well. In fact, the numerical
results presented showed that the proposed iterative method satisfactorily recovered the stiffness coefficient,
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reaching the stopping criterion with a similar number of iterations in the different tests, even when simulated
for different parameters .
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