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Abstract: In this contribution we address the following
question: what is the behavior of a disease spreading between two
distinct populations that interact, under the premise that both
populations have only partial immunity to circulating stains of
the disease? Our approach consists of proposing and analyzing
a multi-fractional Susceptible (S), Infected (I), Recovered (R)
and Cross-immune (C) compartmental model, assuming that
the dynamics between the compartments of the same population
is governed by a fractional derivative, while the interaction
between distinct populations is characterized by the proportion
of interaction between susceptible and infected individuals of
both populations. We prove the well-posedness of the proposed
dynamics, which is complemented with simulated scenarios
showing the effects of fractional order derivatives (memory) on
the dynamics

I. INTRODUCTION

e astonishing spread of infection diseases in recent years (e.g., influenza and the COVID-19 pandemic) is
among the main concerns of human civilization because they represent one of the main causes of population
mortality, e.g., [13]. e track of the recent pandemics shows that one important mechanism for their global
spread is the interaction between distinct populations. Furthermore, many infection diseases are capable of
gene recombination with those of currently circulating strains, giving rise to new viral sub-types capable of
escaping (partially) the immune system defenses of previously infected or vaccinated hosts, conferring only
a partial immunity (cross-immunity) of the population, See, [1,10] and references therein.

Many mathematical models have been proposed to describe the dynamics of diseases and their mutations
in the population (see [4] for a review). A typical approach uses multiple SIR, connected via some cross-
immunity parameters, to model the interactions between individuals that are (or have been) infected by

https://orcid.org/0009-0008-9877-1415
https://orcid.org/0000-0001-9401-5315
https://orcid.org/0000-0001-8431-9120
http://portal.amelica.org/ameli/journal/602/6024323007/
https://doi.org/10.5281/zenodo.8071103


Ana Carolina Maurmann, et al. A Fractional SIRC Model For The Spread Of Diseases In Two Interactin...

PDF generated from XML JATS4R 47

different viral strains, e.g., [2]. e analysis of these models has shown that multiple strains of certain diseases
can persist in the human population and that their prevalence can exhibit self-sustained oscillations through
time. In [12] the author suggested a model with immunity loss to incorporate re-infection by distinct strains.
In [9] the proposed model incorporates a ‘temporary partial immunity’ for the R compartment to handle the
virus mutation. In [3], a new compartment (C), for cross-immune individuals (individuals that are not fully
susceptible (S) or recovered (R)) is introduced. Individuals in this new compartment have their immune
responses boosted by exposition to mutated strains. is model is called SIRC. In [7,8], a fractional and
multi-fractional dynamics for the SIRC model (called (F)-SIRC and (MF)-SIRC models, respectively) are
proposed and analyzed. e authors show that the (MF)-SIRC model is capable of describing with better
agreement data from the H1N1 influenza diseases. Moreover, the fractional dynamics allows for accounting
for memory in the immune system (immunological memory).

In the approaches above cited, the interaction between populations is not considered. e main
contributions of this manuscript are the proposal and the analysis of a multi-fractional SIRC model
with two populations that interact ((MP)-FSIRC model). is method allows determining the effects of
immunological memory in one sub-population (for example, acquired through vaccination) on disease
propagation into a second sub-population, as well as the effects on disease dissemination and cross-immunity.

Outline: In Section II, we present the (MP)-FSIRC model with two populations that interact. We
show the well-posedness of the proposed dynamic in Section III. In Section IV, we analyze numerically
some simulated scenarios for the proposed model. In Section V, we formulate some conclusions and future
directions.

II. MATHEMATICAL MODELING

We assume two distinct sub-populations exist, with the total number of individuals in each sub-population
Nj(t) = Sj(t) + Ij(t) + Rj(t) + Cj(t) distributed in the compartments of Susceptible Sj, Infected or Infectious
( Jj), Recovered or Removed (Rj) and Cross-immune (Cj), for j=1,2. Furthermore, there is an interaction
between the individuals of the distinct populations. Such interactions allow susceptible individuals from sub-
population i to become infected through contact with infected individuals from sub-population j for i,j=1,2
and i  j . e probability of the aforementioned fact happening is proportional to the contact between the
distinct sub-populations and is given by  , for i,j=1,2 and i  j. We also consider that each
sub-population has some immunological memory and that such immunological memory is described by the

fractional dynamics given by the Caputo fractional derivative operator (.) of order  (see [5]
for the definition of the Caputo derivative and its memory-enhancing effect).

In other words, the disease dynamics follows the multi-fractional coupled system (MP)-FSIRC, given by:

and initial conditions
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(2)

for i,j=1,2 and i  j. All the parameters in the model (MP)-FSIRC (1) are assumed to be constant. e
parameters and are the average inverses of the time spent by individuals in the three compartments Ij , Rj

and Cj , respectively. e birth and mortality rates is given by . e average reinfection probability of an
individual in Cjis  . For i,j=1,2, respectively,  represents the infection rate between individuals in the
same population if i=j , whereas represents the infection rate between distinct populations in case of i  j.

III. WELL-POSEDNESS FOR THE (MP)-FSIRC MODEL

In this section, we show the existence of a unique continuous solution

or of the (MP)-FSIRC model (1) with initial conditions (2). We also show that such a solution is
continuously dependent on the initial conditions, system parameters, and the fractional-order of the Caputo
derivatives , for . We begin showing some preliminary results concerning the (MP)-FSIRC model (1).

Lemma 1: Let , where is the total of individuals of sub-population . en is constant for any .
Proof: It follows from the linearity of the fractional derivative (see [5]) that

for j=1,2. Summing up the right hand side of (MP)-FSIRC model (1), we have that , for any
j=1,2. Hence Nj(t) is constant, for j=1,2 (see e.g., [5]) and the assertion follows.

Lemma 2: If a solution X(t) of (MP)-FSIRC (1) model with initial conditions (2) exists, then it is
uniformly bounded by N(0). In particular all the coordinates of X(t) are uniformly bounded.

Proof: Let ||.||1 be the 1-norm in . It follows that ||X(t)||1  ||N(t)||1, for any t  0. Since N(t) is
constant (see Lemma 1), the assertion follows.

Let the map F: [0,  ) x  given by
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, where and , are the right hand side , for
i,j=1,2, with i  j , respectively. Proposition 1: Let the map defined above F(t,X(t)) defined above. en:

i. F(t, X(t)) is continuous for t  0.
ii. ere exist constants  and such that  .
iii. F(t, X(t)) is Lipschitz continuous w.r.t. the second coordinate.
Proof: Item i) is derived from the fact that each coordinate of F(t,X(t)) is made up of the sum and product

of continuous functions. Using Lemma 2, we can conclude that the first coordinate of F(t,X(t)) is such that

where and .
With analogous arguments presented above for each coordinate of , the assertion on item~ii follows.

Applying the Mean Value eorem, we get the existence of a such that, for any ,

,(3)

where is the Jacobian of the map , given by

Here  denotes the 4 x 8 null matrix. Since JF1(t,X(t))=A1 + A2 where A1 and A2 are given by

and
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, respectively for

On the other hand, JF2(t, X(t)) is given by

, where
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Hence, it follows from Lemma 2 that each coordinate of JF(t, X(t)) is uniformly bounded. As a results,
there exists L  0 such that ||JF(T,X(t))|| L. erefore, from (3) and the Cauchy-Schwarz inequality, the
assertion iii) follows.

e theorem that follows is the main theoretical result of this contribution.
eorem 1: Let the (MP)-FSIRC (1) and the corresponding initial conditions (2). en:
[Existence and uniqueness] ere is a unique continuous solution X(t) for the (MP)-FSIRC model (1),

for .
[Continuous dependence] e (MP)-FSIRC model (1) solution X(t) is continuously dependent on the

model parameters and fractional derivatives , for any j=1,2.
Proof: Integrating the (MP)-FSIRC model (1) with order for j=1,2 results in the model being

equivalent to Volterra's system of equations

(4)

where  and  represents the k-coordinate of F(t,X(t))
with , if k=1,...,4 and  if k=5,...,8.
Let . en (4) can be rewritten as

for k=1,2,...,8, where,

Let  be the expression of the vector map F(t,X(t)) with coordinates corresponding to , for
k=1,...,8. . We know from Proposition 1 itens-i)-iii) that F(t,X(t)) is continuous with respect to Importar
imagen and Lipschitz is continuous with respect to X(t). A direct calculation reveals that also meets
these requirements. erefore, the Fixed Point eorem (as used in the Picard theorem - see also eorem
8.3 in [5]) can be applied to guarantee the existence of a unique continuous solution X(t) for the (MP)-
FSIRC (1) with initial conditions (2), in the interval [0,T*] for some T* > 0. Moreover, Proposition 1, ii)
implies F is linearly increased. erefore, the assumptions of eorem 3.1 in [11] are satisfied. It implies
that the solution X(t)can be continuously extended to the positive real line. It concludes the assertion i).
Furthermore, Proposition 1 implies that the assumptions of eorem~6.20 - 6.22 in [5] hold true. Hence,
item ii) follows.
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IV. SIMULATED SCENARIOS

In this section, we present some simulated scenarios for the (MP)-FSIRC (1). e numerical solution for
the (MP)-FSIRC (1) calculated using a trapezoidal type method with a mesh size of of (5), proposed in [6].
Since the mesh-size corresponds to the time scale, we re-scale all the parameters accordingly. e simulations
are run for a time corresponding to 120 days and for choices of the fractional derivatives of order.

A. Scenario with Symmetric Sub-populations

In this section, we present distinct scenarios of the proposed dynamics for a symmetric population. It means
that .e remaining parameters are given by

e initial conditions are such that , implying that only the sub-population 1 is infected at Importar
imagen , whereas the population 2 is infection-free.

FIG. 1.
Dynamics of infection on the sub-population 1, in the scenario of symmetric populations
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FIG. 2
Dynamics of cross-immune on the sub-population 1, in the scenario of symmetric populations

Figures 1 and 2 show the dynamics of infection and cross-immunity for both sub-populations. Looking
only at the simulated scenarios (the simulated scenarios in “black---”, “cyan---” and “red---” are almost
coincident, as well as the ones in “blue---” and “green---”) for the sub-population 1, we conclude that the best
strategy is the one in which the sub-population 1 has more immunological memory (). e scenario with and
(plotted “yellow---”) has a minor peck of infection as well as a minor cross-immunity percentage, whereas (no
immunological memory in the sub-population 1) has a higher peck of infection as well as a higher percentage
of cross-immunity.

e simulated scenarios for sup-population 2, presented in Figures 3 and 4 lead to a similar conclusion as
described above (the simulated scenarios in “blue---” and “red---” as well as the ones in “yellow---”, “cyan---”
and “green---” are nearly identical), where it can be seen that the relation corresponds to cases where the
diseases have fewer infected persons at the epidemiological peck and a lower percentage of cross-immunity.

FIG. 3.
Dynamics of infection on the sub-population 2, in the scenario of symmetric populations
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FIG. 4.
Dynamics of cross-immune on the sub-population 2, in the scenario of symmetric populations

FIG. 5.
Dynamics of infection on the total population, in the scenario of symmetric populations

FIG. 6.
Dynamics of cross-immune on the total population, in the scenario of symmetric populations
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B. Scenario with Non-symmetric Sub-populations

In the following, we analyze some simulated scenarios of the proposed dynamics where the populations are
non-symmetric. In the simulations, we use N1=10 and N2=1.

e remaining parameters used are ,  , ,

, , for two scenarios of initial infections.
First scenario: e disease starting in sub-population 1: We first simulate the scenario where the sub-

population has infected individuals, while sub-population 2 is free of infection at Importar imagen . It is
equivalent to the initial condition X(0)= (9.99,0.01,0,0,1,0,0,0,0,0)T

Figures 7 to 10 show the dynamics of infection and cross-immunity for both sub-populations in this
scenario (the simulated scenarios in “red---”, “cyan---” and “yellow---” are almost coincident, as well as those
in “blue---” and “green---”.). Analyzing the results for the sub-population 1 in Figure 7 and 8, we conclude
that the favorable scenario is the one with . e most favorable scenario is depicted in “black---”, in
which sub-population 2 has more immunological memory  . However, we cannot conclude that

 is the best strategy because the ones with  and  (shown in “green---”) are just as bad
as the ones with no memory (shown in “blue---”).

FIG. 7
Dynamics of infected of the sub-population 1, in the scenario with anti-

symmetric populations. Diseases starting in the larges sub-population
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FIG. 8.
Dynamics of cross-immune of the sub-population 1, in the scenario with

anti-symmetric populations. Diseases starting in the larges sub-population

FIG. 9.
Dynamics of infected of the sub-population 2, in the scenario with anti-

symmetric populations. Diseases starting in the larges sub-population.
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FIG. 10.
Dynamics of cross-immune of the sub-population 1, in the scenario with

anti-symmetric populations. Diseases starting in the larges sub-population

FIG. 11.
Dynamics of the infected population, in the scenario with anti-

symmetric populations. Diseases starting in the larges sub-population
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FIG. 12.
Dynamics of cross-immune population, in the scenario with anti-

symmetric populations. Diseases starting in the larges sub-population.

e analysis of the dynamics of the total population depicted in Figures 11 and 12 shows that the scenarios
are favorable if both populations have some memory with . Otherwise, if (no memory for the sub-population
1), then even if the sub-population 2 has some memory, it is not enough to diminish the effects of the disease
(depicted in “green---”). is scenario shows that the strategy is to guarantee immunological memory for both
sub-populations, giving more importance to the smallest sub-population. Hence, the simulated scenarios
sugget that any vaccination campaing any vaccination campaign should start, if possible, as in the symmetric
case, in the sub-population that is disease-free.

Second scenario: e disease starting in sub-population 2: We assume that sub-population 2 has infected
individuals while sub-population 1 is free of infection at t=0. is scenario corresponds to the initial
condition .

Figures 13 to 16 show the dynamics of infection and cross-immunity for both sub-populations in this
scenario (the simulated scenarios in “red---”, “cyan---” and “yellow---” are almost coincident, as well as those
in “blue---” and “green---”.). e results for the sub-population 1 in Figure16 show a favorable scenario if ( )
while for the sub-population 2 is the one with () depicted in “yellow---”.
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FIG. 13.
Dynamics of infected of sub-population 1, in the scenario with anti-

symmetric populations. Diseases starting in the smallest sub-population

FIG. 14.
Dynamics of cross-immune of sub-population 1, in the scenario with anti-

symmetric populations. Diseases starting in the smallest sub-population
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FIG. 15.
Dynamics of infected of sub-population 2, in the scenario with anti-

symmetric populations. Diseases starting in the smallest sub-population

FIG. 16.
Dynamics of cross-immune of sub-population 2, in the scenario with anti-

symmetric populations. Diseases starting in the smallest sub-population
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FIG. 17.
Dynamics of infected of the total population, in the scenario with anti-
symmetric populations. Diseases starting in the smallest sub-population

FIG. 18.
Dynamics of of the total population, in the scenario with anti-

symmetric populations. Diseases starting in the smallest sub-population

On the other hand, the simulated scenarios for the total population depicted in Figure 17 and 18 show
that the scenarios are favorable for lower values of , with . is scenario shows that the strategy is to
guarantee immunological memory for the sub-populations jointly, giving more importance to the biggest
sub-population. is means that, in such a scenario, any vaccination campaign should start for the sub-
population that is disease-free, as before.

V. CONCLUSIONS

We propose a multi-fractional derivative dynamics for the SIRC model for disease dissemination as an
alternative to describe the existence of immunological memory in a setting with two populations that
interact, called (MP)-FSIRC. We prove the well-posedness of the proposed (MP)-FSIRC-model and also
present distinct simulated scenarios for the fractional derivative as well as for the sub-population sizes and
disease prevalence at t=0. e numerical results show that the existence of immunological memory in both
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sub-populations (described by the fractional dynamics), in general, presents a favorable epidemiological
situation, with smaller infection pecks and less cross-immunity. e most favorable epidemiological scenarios
are those in which the disease-free sub-population at t=0 has greater immunological memory, as discussed
in Section IV. It turns out that any vaccination campaign should start, if possible, with the sub-population
that is disease-free.

e theoretical questions of existence and stability for stationary points as well as simulated scenarios with
other choices for the model parameters and fractional order derivatives will be addressed by the authors in
future contributions.
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