Artículos de investigación

Implementacion de un MPC en un intercambiador de calor usando LabVIEW

MPC implementation in an heat exchanger using LabVIEW

Namigtle-Jimenez, A.; Bautista-Merino, O.; Namigtle-Jimenez, J; Cortes-Vazquez, O.; Namigtle-Jimenez, L.E.

A. Namigtle-Jimenez alfredo.namigtle@uttehuacan.edu.mx Universidad tecnológico de Tehuacán, México O. Bautista-Merino oscar.bautista@uttehuacan.edu.mx Universidad tecnológico de Tehuacán, México J Namigtle-Jimenez jesus.namigtle@tesjo.edu.mx Tecnológico de Estudios Superiores de Jocotitlan, México O. Cortes-Vazquez odon.cortes@uttehuacan.edu.mx Universidad tecnológico de Tehuacán, México L.E. Namigtle-Jimenez enrique.namigtle@inaoep.mx Instituto Nacional de Astrofísica, óptica y Electrónica, México

Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI

Universidad Autónoma del Estado de Hidalgo, México ISSN-e: 2007-6363 Periodicidad: Semestral vol. 9, núm. 18, 56-64, 2022 sitioweb@uaeh.edu.mx

Recepción: 11 Marzo 2021 Aprobación: 28 Junio 2021

URL: http://portal.amelica.org/ameli/journal/595/5953117007/

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Resumen: En el presente artículo se muestran los resultados obtenidos en la implementación de un controlador predictivo basado en modelo (MPC) aplicado a un intercambiador de calor utilizando LabVIEW de National Instruments. Un modelo nominal de un intercambiador de calor se tomó de la literatura. Se aplicó al modelo nominal la expansión en series de Taylor en un punto de operación definido naturalmente por el sistema para obtener una ecuación lineal del sistema de interés. El algoritmo de control discreto se implementa en software y se ejecuta en tiempo real con apoyo de una tarjeta de adquisición de datos NIDAQ6008 de National Instruments. Las estimaciones de los parámetros físicos son experimentales y algunos de proveedor. El algoritmo implementado asegura la regulación de la temperatura de los fluidos que interactúan en el sistema.

Palabras clave: Intercambiador de calor, NIDAQ6008, LabVIEW, Series de Taylor, Modelado de proceso.

Abstract: In the present paper the results obtained in the implementation of the basedmodel predictive controller (MPC) applied to an heat exchanger using LabVIEW of National Instruments is showed. A nominal model of heat exchanger was taking from literature. Taylor?s series expansion of the nominal equation around a naturally defined operating point by the system was applied to obtain a linear equation of the system of interest. Discrete algorithm control is implemented under software and it's runs online using NIDAQ6008 data acquisition board of National Instruments. Physics parameters estimation are experimental and supplier data. The algorithm implemented ensure the temperature regulation of the fluids that interact in the system.

Keywords: MPC, Heat Exchanger, NIDAQ6008, LabVIEW, Taylor's Series, Process modeling.

Modelo de publicación sin fines de lucro para conservar la naturaleza académica y

PDF generado a partir de XML-JATS4R

1. Introducción

En las grandes plantas químicas el consumo energético es elevado respecto al resto de recursos implicados en el proceso y por lo general requieren sistemas de recuperación de energía para mantener la operación a un nivel económico competitivo. Para lograr este objetivo se hace uso generalmente de intercambiadores de calor ya que desempeñan un papel importante principalmente en refinerías de petróleo y plantas retroque imitas, en donde flujos calientes generados en un gran número de procesos se pueden utilizar para aumentar la energía térmica de los flujos fríos que alimentan a otros procesos (Bemporad et al., 2004; Gonzalez et al., 2006).

Las condiciones de salidas térmicas de varias corrientes durante el proceso en el intercambiador de calor deben controlarse cerca de los valores deseados asociados a las especificaciones de los productos, las restricciones ambientales y las limitaciones de seguridad sin

reducir la eficiencia de la operación. Por lo tanto, el requisito habitual de satisfacer los objetivos de control debe cumplirse sin reducir la integración del calor o, casi de forma equivalente, manteniendo un bajo consumo de servicios.

Existen trabajos donde implementaron controladores a sistemas y.o procesos químicos y han brindado buenos resultados. En muchos de estos trabajos se han diseñado e implementado controladores PID y MPC (Mercangoz et al., 2007; Sivakumar and Mathew, 2013)

Distintos investigadores han resaltado las diferencias de diseño y de rendimiento de un controlador Proporcional-Integral- Derivativo(PID) y un Controlador Predictivo basado en modelo (MPC). Se ha notado que un controlador MPC es mejor que un

PID en términos como el sobrepaso máximo (Mp), tiempo se asentamiento (ts), tiempo de levantamiento (tr) y error en estado estable (ess) (Eliana Pena et al., 2008; Thomsen et al., 2010; Mapok et al., 2013; Salem and Mosaad, 2015).

Los controladores PID han producido resultados promete dores en procesos industriales, pero su rendimiento puede degradarse si

las condiciones de funcionamiento de los sistemas varían de las condiciones de ajuste (Mercang oz et al., 2007; Afram and Janabi- Sharifi, 2014; Salem and Mosaad, 2015; Sawant et al., 2020). Por otro lado, el control predictivo es una técnica de control avanzado que generalmente es usado en procesos industriales que tiene como objetivo predecir comportamientos futuros del sistema modelado. Además, es más potente que el control PID, incluso para bucles simples sin restricciones, sin ser mucho más difícil de afinar, incluso en bucles difícil les como los que contienen largos retrasos de tiempo. (Macie- jowski, 2002; Gonzalez et al., 2006; Yilmazlar and Kaplanoglu, 2012; Sivakumar and Mathew, 2013; Zhang et al., 2020).

El control predictivo basado en modelo es un método avanzado de control de procesos que ha evolucionado conforme a las nuevas tecnologías computacionales; en donde el controlador utiliza un modelo dinámico del proceso para predecir las trayectorias de salida y realiza una optimización en línea limitada para determinar la secuencia de entrada futura optima (Diehl et al., 2001; Hollar and Waghmare, 2010). El controlador MPC dejo de considerarse cuando los sistemas computacionales no eran capaces de procesar algoritmos que este exigía (Wang, 2009).

Distintos investigadores han resaltado las diferencias de diseño y de rendimiento de un controlador Proporcional -Integral - Derivativo(PID) y un Controlador Predictivo basado en modelo (MPC). Se ha notado que un controlador MPC es mejor que un PID en términos como el sobrepaso máximo (Mp), tiempo se asentamiento (ts), tiempo de levantamiento (tr) y error en estado estable (ess) (Eliana Pena et al., 2008; Thomsen et al., 2010; Mapok et al., 2013; Salem and Mosaad, 2015).

Los controladores PID han producido resultados prometedores en procesos industriales, pero su rendimiento puede degradarse si las condiciones de funcionamiento de los sistemas varían de las condiciones de ajuste (Mercang oz et al., 2007; ^{°°} Afram and Janabi- Sharifi, 2014; Salem and Mosaad, 2015; Sawant et al., 2020). Por otro lado, el control predictivo es una técnica de control avanzado que generalmente es usado

en procesos industriales que tiene como objetivo predecir comportamientos futuros del sistema modelado. Además, es m as potente que el control PID, incluso para bucles simples sin restricciones, sin ser mucho más difícil de afinar, incluso en bucles difíciles como los que contienen largos retrasos de tiempo. (Macie- jowski, 2002; Gonzalez et al., 2006; Yilmazlar and Kaplano glu, [~] 2012; Sivakumar and Mathew, 2013; Zhang et al., 2020).

El control predictivo basado en modelo es un método avanzado de control de procesos que ha evolucionado conforme a las nuevas tecnologías computacionales; en donde el controlador utiliza un modelo dinámico del proceso para predecir las trayectorias de salida y realiza una optimización en línea limitada para determinar la secuencia de entrada futura optima (Diehl et al., 2001; Holkar and Waghmare, 2010). El controlador MPC dejo de considerarse cuando los sistemas computacionales no eran capaces de procesar algoritmos que este exigía (Wang, 2009).

El mérito mas importante del MPC es que permite optimizar el intervalo de tiempo actual, sin dejar de tener en cuenta los intervalos de tiempo futuros, es decir, se optimiza un horizonte temporal finito, mientras que el intervalo de tiempo actual simplemente se implementa. Por lo tanto, el MPC tiene la capacidad de predecir el comportamiento futuro y puede implementar acciones de control en consecuencia (Orukpe, 2012).

En este trabajo se muestra la metodología empleada para el diseño de un controlador MPC. Primero se muestra los resultados en simulación y posteriormente su implementación en tiempo real usando software y hardware de National Instruments.

2. INTERCAMBIADOR DE CALOR

En este trabajo se diseña y se implementa un controlador [~] MPC en un intercambiador de calor. El sistema propuesto es un intercambiador de calor de tubos concéntricos de contraflujo (ver Figura 1), que básicamente es un sistema en el que se lleva a cabo una transferencia de energía, en este caso, entre dos fluidos a diferentes temperaturas siendo este un sistema MIMO (Múltiple Input, Múltiple Output) con dos entradas y dos salidas (Thulukkanam, 2013).

FIGURA 1

Estructura del intercambiador de calor de tubos concéntricos de contraflujo

Se elige el modelo matemático nominal simplificado propuesto en (Weber et al., 2000; Astorga-Zaragoza et al., 2008) ya que mantiene las características principales de comportamiento bajo las siguientes suposiciones:

§ S1. El volumen es constante en los tubos.

§ S2. La taza de transferencia de calor depende linealmente de la diferencia de temperatura entre los dos tubos.

§ S3. El coeficiente de transferencia de calor está relacionado a las temperaturas de los fluidos.

§ S4. No existe transferencia de calor entre el ambiente y el lado frio. S5. Las propiedades termo físicas de los fluidos son constantes.

§ S6. Se ignora el almacenamiento de la energía en las paredes.

La ecuación (1) representa el modelo nominal del intercambiador de calor a partir de las ecuaciones de balance de energía (Boquete (2003)).

$$\begin{split} \dot{T}_{co} &= \frac{v_c}{V_c} (T_{ci} - T_{co}) + \frac{UA}{V_c \rho_c c_{pc}} (T_{ho} - T_{co}), \\ \dot{T}_{ho} &= \frac{v_h}{V_h} (T_{hi} - T_{ho}) - \frac{UA}{V_h \rho_h c_{ph}} (T_{ho} - T_{co}). \end{split}$$
(1)

La Tabla 1 muestra los parámetros del intercambiador de calor. *Tic, Ti* son las entradas del sistema y *Tco, Tho* corresponden a los estados del sistema. Note que todas las variables de la tabla son positivas por definición (Weyer et al., 2000).

TABLA 1								
Parámetros del Intercambiador de calor								
Parámetro	etro Descripción							
A	Área superficial de la transferencia de calor							
c_{pc}	Calor específico del lado frío							
c_{ph}	Calor específico del lado caliente							
T_{ci}, T_{hi}	Temperaturas de entrada caliente y frío							
T_{co}, T_{ho}	Temperaturas de salida caliente y frío							
$oldsymbol{U}$	Coeficiente de transferencia de calor							
v_c	Flujo del líquido en el lado frío							
v_h	Flujo del líquido en el lado caliente							
V_c	Volumen en lado frío							
V_h	Volumen en lado caliente							
$ ho_c$	Densidad del flujo frío							
$ ho_h$	Densidad del flujo caliente							

La Figura 2 muestra el comportamiento del sistema debido a los parámetros de la Tabla 2. Cabe mencionar que se consideró a T_{co} =45.*C*. T_{bo} =80.*C* como valores iniciales.

Se puede observar en la Figura 2 que $T_{ho} = 73,26.C$. $T_{co} = 48,11.C$ en régimen permanente aproximadamente. Para comprobar el estado estable del sistema se iguala a cero (1) quedando (2).

$$0 = \frac{v_c}{V_c} (T_{ci} - T_{co}) + \frac{UA}{V_c \rho_c c_{pc}} (T_{ho} - T_{co}),$$

$$0 = \frac{v_h}{V_h} (T_{hi} - T_{ho}) - \frac{UA}{V_h \rho_h c_{ph}} (T_{ho} - T_{co}).$$
(2)

Cuando . co y . ho toman el valor de cero indica que ya no existe cambio en la salida y por lo tanto es constante, es decir, está en estado estable. Se asignan valores según los parámetros de la Tabla 2 en (2) para obtener (3).

Parámetro	Valor	
A	$0,0199m^2$	
c_{pc}	$4,1792 \times 10^3 \frac{J}{Kg}^{o} C$	
c_{ph}	$4,1903 \times 10^3 \frac{J}{Kg}^{o} C$	
T_{ci}, T_{hi}	°C	
T_{co}, T_{ho}	${}^{o}C$	
U	$1055,9\frac{W}{m^2}^{o}C$	
v_c	$6,67 \times 10^{-6} m^3/s$	
v_h	$1,67 \times 10^{-5} m^3/s$	
V_c	$9,6792 \times 10^{-5} m^3$	
V_h	$2,2337 \times 10^{-5} m^3$	
$ ho_c$	$988,8765 kg/m^3$	
$ ho_h$	$975,8765 kg/m^3$	

TABLA 2: Valores experimentales de los parámetros del Intercambiador de calor

$$0 = 0,0689(T_{ci} - T_{co}) + 0,0525(T_{ho} - T_{co}),$$

$$0 = 0,7476(T_{hi} - T_{ho}) - 0,2300(T_{ho} - T_{co}).$$
(3)

y ahora considerando $T_{ci} = 29.C.T_{bi} = 81.C$ para resolver (3)

$$-1,9981 = -0,1214T_{co} + 0,0525T_{ho},$$

$$-60,55 = 0,23T_{co} - 0,9776T_{ho}.$$
 (4)

y resolviendo este sistema de ecuaciones de (4) se tiene que $T_{ho} = 73,26.C$. $T_{co} = 48,14.C$. Con los resultados obtenidos se garantiza el modelo matemático simplificado para uso en el diseño del controlador MPC.

3. MODELO LINEAL DEL INTERCAMBIADOR DE CALOR

Para fines del diseño del MPC en esta investigación, se necesita tener un sistema de la forma

A. NAMIGTLE-JIMENEZ, ET AL. IMPLEMENTACION DE UN MPC EN UN INTERCAMBIADOR DE CALOR USANDO LABVIEW

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u},$$
$$\boldsymbol{y} = \boldsymbol{C}\boldsymbol{x}.$$
(5)

correspondiente a un sistema lineal. Por lo que, considerando a (1) se logra obtener (6)

$$\frac{d(T_{co})}{dt} = f_{1}(T_{co}, T_{ho}, T_{ci}, T_{hi}) =
\frac{v_{c}}{V_{c}}(T_{ci} - T_{co}) + \frac{UA}{V_{c}\rho_{c}c_{pc}}(T_{ho} - T_{co}),
\frac{d(T_{ho})}{dt} = f_{2}(T_{co}, T_{ho}, T_{ci}, T_{hi}) =
\frac{v_{h}}{V_{h}}(T_{hi} - T_{ho}) - \frac{UA}{V_{h}\rho_{h}c_{ph}}(T_{ho} - T_{co}).$$
(6)

Es importante notar que Tco y Tho son los estados x1 y x2 respectivamente, mientras que las entradas Tci, Thi se representan como u1 y u2, respectivamente (ver (7)).

$$\dot{x_1} = \frac{v_c}{V_c}(u_1 - x_1) + \frac{UA}{V_c\rho_c c_{pc}}(x_2 - x_1),$$

$$\dot{x_2} = \frac{v_h}{V_h}(u_2 - x_2) - \frac{UA}{V_h\rho_h c_{ph}}(x_2 - x_1).$$
(7)

Posteriormente, la liberalización del sistema dado por (7) se dio a partir del empleo de la expansión de las series de Taylor alrededor del punto de operación definido en (4) (Sorenson and Kristiansen, 2007). Sustituyendo los valores de Tabla 2 en (7) se obtiene (8).

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{bmatrix} = \begin{bmatrix} -0,1214 & 0,0525 \\ 0,23 & -0,9777 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \\ \begin{bmatrix} 0,2996x10^{6} & 0 \\ 0 & 3,6263x10^{6} \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}, \\ y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}.$$

$$(8)$$

Entonces ahora, ya que se tiene el sistema continuo lineal izado y expresado en espacio de estados se pasa a discretica. Un sistema discreto se representa por (9).

$$x[k+1] = \phi x[k] + \Gamma u[k],$$

$$y[k] = C x[k].$$
(9)

en donde,

$$\boldsymbol{\phi}(\boldsymbol{t}) = \boldsymbol{e}^{\boldsymbol{A}\boldsymbol{t}} = \mathcal{L}^{-1}\{(\boldsymbol{I}\boldsymbol{s} - \boldsymbol{A})^{-1}\},$$
$$\boldsymbol{\Gamma} = \int_{0}^{h} \boldsymbol{\phi} \, d\tau \cdot \boldsymbol{B}.$$
(10)

considerando un periodo de muestreo de h = 0,01s se obtiene,

$$\boldsymbol{x}[\boldsymbol{k}+\boldsymbol{1}] = \begin{bmatrix} 0,9880 & 0,0050\\ 0,0218 & 0,9069 \end{bmatrix} \boldsymbol{x}[\boldsymbol{k}] + \\ \begin{bmatrix} 0,2978 \times 10^5 & 0,0092 \times 10^5\\ 0,0033 \times 10^5 & 3,4547 \times 10^5 \end{bmatrix} \boldsymbol{u}[\boldsymbol{k}], \\ \boldsymbol{y}[\boldsymbol{k}] = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \boldsymbol{x}[\boldsymbol{k}].$$
(11)

4. Diseño del MPC en el intercambiador de calor

Para llevar a cabo el diseño del MPC, se empleó la metodología presentada en (Wang, 2009) en donde se recomienda como primer paso hacer uso de la (5) en donde u es la variable manipulada o, de entrada, y es la salida y x es el vector de estados, y para un sistema MIMO, estas variables tiene las dimensiones n n, n m y qn respectivamente, es decir, un sistema con m entradas, q salidas y n estados. Posteriormente se obtiene un modelo aumentado del sistema (ver (12)).

$$\begin{bmatrix} \Delta x[k+1] \\ y[k+1] \end{bmatrix} = \begin{bmatrix} A & 0_{qxn} \\ CA & I_{qxq} \end{bmatrix} \begin{bmatrix} \Delta x[k] \\ y[k] \end{bmatrix} + \begin{bmatrix} B \\ CB \end{bmatrix} \Delta u[k],$$
(12)

$$y[k] = \begin{bmatrix} 0_{qxn} & I_{qxq} \end{bmatrix} \begin{bmatrix} \Delta x[k] \\ y[k] \end{bmatrix}.$$
(13)

Entonces considerando (11) y realizando el modelo aumentado se obtiene

$$\begin{bmatrix} \Delta x[k+1] \\ y[k+1] \end{bmatrix} = \begin{bmatrix} 0,9880 & 0,0050 & 0 & 0 \\ 0,0218 & 0,9069 & 0 & 0 \\ 0,0218 & 0,9069 & 0 & 1 \end{bmatrix} \begin{bmatrix} \Delta x[k] \\ y[k] \end{bmatrix} + \\ \begin{bmatrix} 0,2978 \times 10^5 & 0,0092 \times 10^5 \\ 0,0033 \times 10^5 & 3,4547 \times 10^5 \\ 0,2978 \times 10^5 & 0,0092 \times 10^5 \\ 0,0033 \times 10^5 & 3,4547 \times 10^5 \end{bmatrix} \Delta u[k], \\ y[k] = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \Delta x[k] \\ y[k] \end{bmatrix}.$$
(14)

A continuación, considerando (15) se deben obtener las matrices F y Φ .

$$Y = F x(k_i) + \Phi \Delta U \tag{15}$$

Donde

$$F = \begin{bmatrix} CA \ CA^2 \ CA^3 \ \dots \ CA^{H_p} \end{bmatrix}^T,$$
(16)

$$\Phi = \begin{bmatrix} CB & 0 & 0 & 0 \\ CAB & CB & 0 & 0 \\ CA^2B & CAB & CB & 0 \\ \vdots \\ CA^{H_p-1}B & CA^{H_p-2}B & CA^{H_p-3}B & CA^{H_p-H_c}B \end{bmatrix}$$
(17)

En este caso se consideró un horizonte de predicción Hp = 10 y un horizonte de control Hc = 4, por lo que Φ y F son:

	[0,030	0,001	0	0	0	0	0	0 1
Φ =	0,000	0,346	0	0	0	0	0	0
	0,059	0,004	0,030	0,001	0	0	0	0
	0,001	0,659	0,000	0,346	0	0	0	0
	0,088	0,008	0,059	0,004	0,030	0,001	0	0
	0,003	0,943	0,001	0,659	0,000	0,346	0	0
	0,117	0,013	0,088	0,008	0,059	0,004	0,030	0,001
	0,005	1,201	0,003	0,943	0,001	0,659	0,000	0,346
	0,145	0,020	0,117	0,013	0,088	0,008	0,059	0,004
	0,007	1,435	0,005	1,201	0,003	0,943	0,001	0,659
	0,174	0,028	0,145	0,020	0,117	0,013	0,088	0,008
	0,010	1,647	0,007	1,435	0,005	1,201	0,003	0,943
	0,201	0,037	0,174	0,028	0,145	0,020	0,117	0,013
	0,013	1,840	0,010	1,647	0,007	1,435	0,005	1,200
	0,229	0,046	0,201	0,037	0,173	0,028	0,145	0,020
	0,017	2,015	0,013	1,840	0,010	1,647	0,007	1,435
	0,256	0,057	0,229	0,046	0,201	0,037	0,174	0,028
	0,020	2,174	0,017	2,015	0,013	1,840	0,010	1,647
	0,283	0,068	0,256	0,057	0,229	0,046	0,201	0,037
	0,025	2,318	0,020	2,174	0,017	2,015	0,013	1,840

(18)

$$F = \begin{bmatrix} 0,9880 & 0,0050 & 1,0 & 0\\ 0,0218 & 0,9069 & 0 & 1,0\\ 1,9642 & 0,0144 & 1,0 & 0\\ 0,0631 & 1,7295 & 0 & 1,0\\ 2,9289 & 0,0278 & 1,0 & 0\\ 0,1218 & 2,4758 & 0 & 1,0\\ 3,8823 & 0,0448 & 1,0 & 0\\ 0,1960 & 3,1528 & 0 & 1,0\\ 4,8247 & 0,0649 & 1,0 & 0\\ 0,2841 & 3,7672 & 0 & 1,0\\ 5,7561 & 0,0878 & 1,0 & 0\\ 0,3845 & 4,3249 & 0 & 1,0\\ 6,6769 & 0,1132 & 1,0 & 0\\ 0,4959 & 4,8311 & 0 & 1,0\\ 7,5871 & 0,1409 & 1,0 & 0\\ 0,6169 & 5,2908 & 0 & 1,0\\ 8,4870 & 0,1705 & 1,0 & 0\\ 0,7466 & 5,7083 & 0 & 1,0\\ 9,3768 & 0,2018 & 1,0 & 0\\ 0,8837 & 6,0876 & 0 & 1,0 \end{bmatrix}$$

El control optimo incremental dentro de una ventana de optimizacion está dada por (20)

$$\Delta U = (\Phi^T \Phi + r_w \overline{R})^{-1} (\Phi^T \overline{R}_s r(k_i) - \Phi^T F x(k_i)),$$
⁽²⁰⁾

(19)

donde $\Phi T \Phi$ tiene una dimensión de mHc × mHc y ΦT F es de dimensión mHc × n, además ΦT Rs es igual a las q columnas de ΦT F. R es la matriz de ponderación de la misma dimensión que $\Phi T \Phi$ precedida por rw que tiene la función de sintonizar la respuesta del sistema. El vector de referencia r(ki) =[r1(ki)r2(ki) ...rq(ki)]T, es decir, su tamaño corresponde a la cantidad de salidas del sistema. Por último, se aplica el principio de control de horizonte finito, en donde los elementos m en ΔU se tomaron para formar el control optimo incremental ver (21)).

$$\Delta u(k_i) = \begin{bmatrix} I & 0 & \dots & 0 \end{bmatrix} (\Phi^T r_w \Phi + \overline{R})^{-1} (\Phi^T \overline{R}_s r(k_i) - \Phi^T F x(k_i)),$$

(21)

En donde $\lfloor \underline{e_{1}} \underline{e_{2}} \underline{e_{2}} \\$ i tiene un tamaño según Hc e I y 0 son la matriz identidad y matriz cero respectivamente, ambos de tamaño m x m.

5. Simulación del MPC en el intercambiador de calor

Es importante tener bien en claro las dimensiones de las matrices generadas, ya que de estas dependen las operaciones que se realicen. Cabe mencionar que cuando se tiene un sistema SISO (Single Input, Single Output), Rs es un vector [1-1-1-1]caso de los sistemas MIMO, Rs corresponde a una matriz del tamaño Hp ×q.

(22)

La Figura 3 muestra las señales de salida, *Tco*. *Tho* respectivamente, para distintos valores de *rw* y con una referencia de valor .(ki) = 55.65... También se puede apreciar que la respuesta se hace más lenta conforme el par de ambas salidas a metro de sintonización *rw* se hace mas mientras que le lleva más tiempo converger hacia la referencia 4 se observan que las señales de control se minimizan muy rápido cuando con *rw* = 20 x 1010. En la Figura 4 se observan que la señales de control cuando *rw* = 0.

FIGURA 3 Respuesta del sistema a distintos valores de rw

FIGURA 4 Señal de control de cada variable de interés

En la Figura 5 se observa la respuesta del sistema con un distintos valores en la referencia Tco. Tho durante el proceso y un valor en $rw = 10 \times 10$.

FIGURA 5 Respuesta del sistema El tamaño de rw tiene una magnitud grande a causa de los valores de la matriz B.

6. Implementación del MPC en el intercambiador de calor

Con propósitos prácticos y con el fin de comprobar el funcionamiento del controlador MPC según el diseño mostrado anteriormente, se implementó en un sistema intercambiador de calor.

El algoritmo de control se ha diseñado en LabVIEW usando la NIDAQ6008 de *National Instruments* para la adquisición de datos. Se ha tomado como referencia el diagrama de control de la Figura 6 tomado de (Wang, 2009).

Se puede observar en la Figura 6 que la planta o sistema está representado por los bloques que se encuentran dentro de la línea punteada roja, por lo tanto, en la práctica, el intercambiador de calor es quien reemplaza a esa sección. Cabe mencionar que se ha diseñado un controlador MPC a partir de la $\tilde{}$ representación lineal del sistema, sin embargo, el sistema en su forma física tiene un comportamiento no lineal. Por lo anterior se espera que el controlador tenga un buen rendimiento cerca del punto de operación en el que fue lineal izado el sistema. Las Ecuaciones (23) y (24) proporcionan los valores $Kx \cdot Ky$.

FIGURA 6 Control MPC discreto

$$\boldsymbol{K}_{y} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} \left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} + \overline{\boldsymbol{R}} \right)^{-1} \left(\boldsymbol{\Phi}^{T} \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix} \right)$$
(23)

$$K_{y} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} \left(\Phi^{T} \Phi + \overline{R} \right)^{-1} \left(\Phi^{T} F \right)$$
(24)

FIGURA 7 Interfaz del controlador MPC diseñado en LabVIEW

Se propusieron los siguientes valores para la implementación, Hc = 1, Hp = 2000 y rw = 8 1017, obteniendo los siguientes resultados en las ganancias Ky. Kmpc

$$K_{y} = \begin{bmatrix} 0,058 \times 10^{-7} & 0,011 \times 10^{-7} \\ 0,031 \times 10^{-7} & 0,113 \times 10^{-7} \end{bmatrix}$$
(25)

$$K_{mpc} = \begin{bmatrix} 0,283 \times 10^{-7} & 0,009 \times 10^{-7} & 0,058 \times 10^{-7} & 0,011 \times 10^{-7} \\ 0,269 \times 10^{-7} & 0,019 \times 10^{-7} & 0,031 \times 10^{-7} & 0,113 \times 10^{-7} \end{bmatrix}$$
(26)

Antes de realizar la implementación fue necesario llevar acabo la caracterización de los sensores de temperatura de las válvulas que son las que permiten la manipulación del flujo. La Figura 8 muestra las curvas de caracterización de los sensores.

Cabe mencionar que el ajuste de los sensores fue con una ecuación polinomio de la forma ax +b, mientras que para los actuadores se empleó

 $a(sin(x\pi)) + b((x10)2) + c$. También se puede apreciar en la Figura 9 que existen dos curvas por actuador, y esto es porque presentan el fenómeno de histéresis

Posteriormente se llevaron a cabo las pruebas en el intercambiador de calor con la implementación del controlador MPC.

FIGURA 8 Caracterización de sensores Enoc

Caracterización de válvulas del flujo de agua caliente y fría.

7. Resultados de la implementación

A continuación, se muestran los resultados obtenidos con la implementación del MPC. En la Figura 10 se puede observar la respuesta del sistema con un cambio de referencia de *Tho* = 71oC. *Tho* = 67oC. Al mismo tiempo se puede apreciar que la señal cuenta con [~] *ruido* dada por la medición. Otro aspecto importante es que tarda aproximadamente 5,3 minutos para llegar al punto de consigna.

Posteriormente se aplicó el método de la media cuadrática con longitud de 10 datos, esto con el fin de tener una señal sin ruido en donde .1 y .2 corresponde al intervalo de muestreo.

$$x_{rms} = \sqrt{\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} [f(x)]^x dt}$$
⁽²⁷⁾

Respuesta del sistema con cambio de referencia en Tho.

FIGURA 13: Respuesta del sistema con cambio de referencia en Tho.

Señales de control obtenidas en el experimento de la Fig. (13)

8. Conclusiones

La implementación del controlador MPC en el sistema del intercambiador de calor fue complejo ya que, en este caso, se tuvo que realizar la caracterización de cada sensor y actuador, la puesta en marcha y la búsqueda de su respuesta en régimen permanente según parámetros y condiciones iniciales. La propiedad de histéresis en los actuadores exigió más esfuerzo como parte de la instrumentación del equipo. Además, cabe señalar [~]que, las señales de entrada y salida del intercambiador se encuentran con una etapa de instrumentación capaz de acodicio mar la señal para que la DAQ6008 pueda leer y escribir información según su carácter asticas eléctricas.

Después de lograr el acondicionamiento de se mal requerido, se pasó a implementar el control MPC en LabVIEW. Este diseño a parte de incluir el controlador, debía incluir algoritmos particulares para cada actuador con el fin de atenuar la propiedad de histéresis.

El rendimiento del controlador fue aceptable, aunque mostro un error en estado estable de 5 σ C, esto debido a que se tienen dos puntos de consigna, el valor deseado en *Tco* y en *Tho*, por lo tanto, cuando se requería un cambio en la referencia Tho, el sistema intentaba llevarlo a cabo, pero sin modificar el otro punto de consigna (*Tco*).

Los valores que se propusieron de Hc, Hp. rw fueron elegidos según las recomendaciones en (Wang, 2009) y considerando siempre el compromiso de la señal de control U(F) como un voltaje aplicado a las electroválvulas de forma que modifiquen el flujo de los líquidos que interactúan en el sistema. En el caso del parámetro de sintoniza con rw fue imposible proponer un valor nulo debido a que exigía que la señal de control tuviera un valor muy grande; inalcanzable para la tarjeta de adquisición NIDAQ6088 que cuenta solo con salidas de 5 V.

Referencias

- Afram, A. and Janabi-Sharifi, F. (2014). Theory and applications of hvac control systems–a review of model predictive control (mpc). *Building and En vironment*, 72: 343–355.
- Astorga-Zaragoza, C.-M., Alvarado-Martinez, V.-M., Zavala-R 10, A., Mendez Ocana, R.-M., and Guerrero-Ram⁻ 1rez, G.-V. (2008). Observer-based monitoring of heat exchangers. *ISA transactions*, 47(1):15–24.
- Bemporad , A., Ricker, N. L., and Owen, J. G. (2004). Model predictive control new tools for design and evaluation . In *Proceedings of the 2004 American Control Conference*, volume 6, pages 5622–5627. IEEE.
- Bequette, B. W. (2003). Process control: modeling, design, and simulation. Prentice Hall Professional.
- Diehl, M., Uslu, I., Findeisen, R., Schwarzkopf, S., Allgower, F., Bock, H. G., "Burner, T., Gilles, E. D., Kienle, A., Schl "oder, J. P., et al. (2001). Realtime "optimization for large scale processes: Nonlinear model predictive control of a high purity distillation column. In *Online optimization of large scale systems*, pages 363–383. Springer.
- Eliana Pena, T., Perez, A. R., Miranda , A. J., and Sanchez , J. H. (2008). Mo- deling to a cstr reactor and evaluation of a predictive control using matlabsimulink. *INGENIERIA UC*, 15(3):97–112.
- Gonzalez, A. H., Odloak, D., Marchetti, J. L., and Sotomayor, O. (2006). Infinite horizon mpc of a heatexchanger network. *Chemical Engineering Research and Design*, 84(11):1041–1050.
- Holkar, K. and Waghmare, L. (2010). An overview of model predictive control. *International Journal of Control and Automation*, 3(4):47–63. Maciejowski, J. M. (2002). *Predictive control: with constraints*. Pearson education.
- Mapok, K., Zuva, T., Masebu, H., and Zuva, K. (2013). Performance comparison of two controllers on a nonlinear system. *International Journal of Chaos, Control, Modelling and Simulation (IJCCMS)*, 2(3):17–30.
- Mercangoz, Mehmet, III, D., and J, F. (2007). Distributed model predictive" control of an experimental fourtank system. *Journal of process control*, 7(3): 297–308.