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Abstract: In this paper we, contribute the notation of natural
epimorphism of a semilattice on the quotient semilattice and
subsemilattice. If S is distributive semilattice and F is a filter
of S, then we demonstrate that θF is the smallest congruence
on S containing F in a single equivalence class and that S/θF is
distributive. In addition, the author proved that map F#θF is an
isomorphism from the lattice of F0(S) all non-empty filters of S
into a permutable sublattice of the lattice C(S) of all congruencies
on S.
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Resumen: En este trabajo contribuimos con la notación del
epimorfismo natural de una semirredura sobre el cociente
semirreticulado y subsemretículo. Si S es una semirrejilla
distributiva y F es un filtro de S, entonces demostramos que θF es la
congruencia más pequeña en S que contiene F en una sola clase de
equivalencia y que S/θF es distributiva. Además, el autor demostró
que el mapa FI#F es un isomorfismo de la red F0(S) de todos los
filtros no vacíos de S en una subred permutable de la red C(S) de
todas las congruencias en S.

Palabras clave: clase de congruencia de semirredura,
Semirretículo distributivo, Epimorfismo natural de semirreduras,
Cociente de semirreduras.

INTRODUCTION

In [14] (Klein Barmen 1939) introduced the concept of semilattice [13].
A semilattice is a partially ordered set in which any two elements have a
greatest lower bound, but not necessarily upper bound. e class of distributive
semilattices is a significant subclass of semilattices. en, several authors were
studied the class of distributive semilattices. e author refer the reader to [1],
[2], [3], [4], [7], [9], [11], [17], [18], [19], and [21] for distributive semilattices.
e concept of 0-distributive semilattices is another important extension of the
class of distributive semilattices. In [19] (J.C.Varlet 1968) first introduced the
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concept of 0-distributive lattices. en many authors including [3], [6], [10],
[15], [16], and [20] studied concept of 0-distributive for lattices and semilattices.

Let S be a semilattice. A non-empty subset L of S is called directed above if,
for any a,b # L there exists c # L such that a ≤ c and b ≤ c. L is said to be a final
segment if, for any a L and x # S, a ≤ x implies x # L. In addition, a non-empty
subset L is called directed below if, for any, a,b # L, there exists c # L such that c
≤ a and c ≤ b. L is called an initial segment if, for any a # I and x # S, x ≤ a implies
x # I. Following this concept, many authors developed the concept of filters and
ideals of semilattice. e we refer the readers to [7], [16], [17] , and [18].

Let S and L be semilattices. A map f : S → L is said to be a homomorphism, if f
is join preserving and meet preserving, that is, for all a,b # S.

A bijective homomorphism is a semilattice isomorphism [22]. If f : L → K is
a one-to-one homomorphism, then the sub-semilattice of f(S} L is isomorphic
to S and we refer to f as an embedding (of S into L). In [18] (Swamy 1979)
introduced the class of natural epimorphism of a semilattice on the quotient
semilattice, and he denoted the natural epimorphism of semilattice S on the
quotient semilatticeby S/θF by πF. For any sub-semilattice L of a semilattice S,
define

Aer (Swamy 1979) nobody gives attention to the concept of congruence
classes on the distributive semilattice as far as we investigate it. erefore, by
following this, we consider and demonstrate that; map F#θF is an isomorphism
from the lattice F0(S) of the class of all non-empty filters of S into a permutable
sublattice of the lattice C(S) of the classes of all congruencies on S. In addition, we
prove that θF is the smallest congruence on S containing F in a single equivalence
class and that S/θL is distributive.

e manuscript is structured as follows. In this section, we introduced the
background of semilattice with basic results about semilattices which are already
exists and needed in developing this manuscript. In Section 2, we introduced the
concepts of distributive semilattices. Some important eorems and Corollaries
in distributive semilattices and pseudo-complemented semilattice were also
presented in this section. In section 3, we will prove the theorems belonging to
classes of congruence in distributive semilattice.

PRELIMINARIES

In this section, the author will present some necessary notations and definitions.
Definition: 2.1. [2] Let S be a semilattice. A non-empty subset F of S is called

a filter if;
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Definition: 2.2. [3] A non-empty subset I of S is called an ideal if;

A filter (ideal) F of a semilattice S is called a proper filter (ideal) if ≠ S. A
maximal filter (ideal) F of S is a proper filter (ideal), which is not contained in
any other proper filter (ideal), that is, if there is a proper filter (ideal) G such that
F # G, then F = G. (see [4])

Let F(S) and I(S) denotes the set of all filters of S and the set of all ideals of S
respectively. en, for any a # S, let (a] denote the ideal

{x # S : x ≤ a} and [a) denotes the filter
{x # S : a ≤ x}. (see[11])
Definition: 2.3. [5] A semilattice S is said to be distributive if, for any a,b,c #

S, such that a Λ b ≤ c, there exist x, y # S such that a ≤ x, b ≤ y, and x Λ y = c.
Lemma 2.4. [4] If S is a distributive semilattice, S is directed above.
Proof. Suppose S be a distributive semilattice, then for any a,b # S, a Λ b # S

and a Λ b ≤ b. ere exists x,y # S such that a ≤ x, b ≤ y, and x Λ y = b. Also b = x
Λ y ≤ x . erefore, for any a,b # S, there exists x # S such that a ≤ x and b ≤ x.

Hence S is directed above.
eorem 2.5. [6] Let I be an ideal of S and J a filter of S such that I ∩ J ≠ Ø.

en, I ∩ J is a distributive sub-semilattice of S.
Proof. Suppose I be an ideal of S and J a filter of S such that I ∩ J ≠ Ø. Let

a,b # I ∩ J, then a Λ b # I. Since I is the initial segment, there exist c J # such
that c ≤ a and b ≤ c.

is implies c ≤ a Λ b and a Λ b # J since J is the final segment. erefore I ∩
J is a sub-semilattice of S.

Let a,b,c # I ∩ J such that a Λ b ≤ c. ere exists x,y # S such that a ≤ x, b ≤ y,
and x Λ y = c. Since I is an ideal of S, there exist z # I such that a ≤ z, b ≤ z and c ≤ z.

Now c = c Λ z = (x Λ z) Λ (y Λ z), a ≤ x Λ z # I ∩ J and b ≤ y Λ z # I ∩ J.
erefore I ∩ J is distributive sub-semilattice.

Definition 2.6. [19] A semilattice S with 0 is called 0 - distributive if for any
a,b,c # S such that a Λ b = 0 = a Λ c implies a Λ d = 0 for some d ≥ b,c.

Proposition 2.7. [16] Let S be distributive semilattice. Let I be an ideal of S and
J a filter of S such that I ∩ J ≠ Ø then, I ∩ J is a distributive sub-semilattice of S.

Proof: Suppose that I is an ideal of S and J is a filter of S such that I ∩ J ≠ Ø.
Let a,b # I ∩ J, then a Λ b # I. Since I is the initial segment, there exist c # J such
that c≤ a and b≤ c. Hence c ≤ a Λ b and a Λ b # J, since J is the final segment. us
I ∩ J is a sub-semilattice of S. Let a,b, and c # I ∩ J such that a Λ b ≤ c. ere
exists x and y # S such that a ≤ x, b ≤ y and x Λ y = c. Since I is an ideal of S, there
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exist z # I such that a≤z, b≤z, and c≤z. en we have c = c Λ z = (x Λ z) Λ (y Λ
z), a ≤ x Λ z # I ∩ J and b ≤ y Λ z # I ∩ J. Hence I ∩ J is distributive.

eorem 2.8. [18] Let (S, Λ, V) be a lattice. en the following are equivalent:

1. (S, Λ, V) is a distributive lattice.
2. (S, Λ) is a distributive meet semilattice.
3. (S, V) is a distributive join semilattice.

Corollary 2.9. [18] Every non-empty ideal (filter) of S is a distributive sub-
semilattice of S.

Proof: Suppose that I is a non-empty ideal of S. Let a,b # I such that a Λ b ≤ c.
ere exist x,y # S such that a ≤ x and b ≤ y, and c=cΛy as S is distributive. ere
exist z # I such that a≤z, b≤z and c≤z as I is an ideal of S.

Now. c = c Λ z = (x Λ y) Λ z = (x Λ z) Λ (y Λ z)# I
Hence I is distributive.
Similarly, suppose that J is a nonempty filter of S. For any a,b # J, there exist

c # J such that c≤ a and

as J is the final segment. en, J is a sub-semilattice of S. Let a,b,c # J such that
a Λ b ≤ c, there exist x,y # S such that a ≤ x, b ≤ y, and x Λ y = c.

Now as a,b and c # J, then x,y # J. Hence xΛy=c#J.
erefore J is distributive.
eorem 2.9. Let I be an ideal of S and L is a sub-semilattice of S such that I
∩ L = Ø, then, there exists a prime ideal P of S such that I C P and P ∩ L = Ø.

Proof: Suppose that T ={x#S : a ≤ x for some a#L}. en T is the filter of S and
T∩I=Ø and by Zorn’s lemma, there exists a filter F of S which is maximal among
all filters containing L, and disjoint from I. Now I C S - F and (S-F)∩L=Ø.

Let us prove F is a prime filter. Let x,y # S- F, then by maximalist of F there
exists

ere exist c # I such that a ≤ c and b ≤ c

erefore F is a prime filter of S.
eorem 2.10. [21] Every maximal ideal (filter) of S is prime.
Proof: Let S be distributive semilattice and Q is a maximal filter of S. en S-Q

is minimal ideal. en there exist a prime ideal I such that S-Q#I then Q ∩ I = Ø
Let x,y#Q, then x,y # S-Q. en there exist a# I ∩ (Q Λ[x)) and b # I ∩ (Q

Λ[y)).
is implies there exist c # I such that a≤ c and b≤ c, since I directed above.
Hence
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erefore Q is a prime filter of S. Hence the result.
eorem 2.11. [17] Let S be a semilattice. S has a largest element if and only if

the intersection of all nonempty filters is again non-empty.
Proof: Suppose that S has, a largest element says t, then t # ∩F#F(s) F.

Conversely suppose that the intersection of all nonempty filters (ideals) is again
non-empty, by proposition 2.3, S has a Largest (smallest) element.

Lemma 2.12. [17] Let P C S. en P is a prime filter of S if and only if S - P
is a prime ideal.

Proof: Suppose P is a prime filter of S, it is non-empty and proper. To show
S-P is directed above, let a,b#S-P. Suppose if possible [a)∩[b)∩S-P=Ø, then
[a)∩[b)#P. is implies [a)#P or [b)#P. Since P is prime then a # S - P or b #
S - P. is is a contradiction. erefore ([a)∩[b))∩S-P≠ Ø

So S - P is an ideal. To show that S - P is prime, suppose

Hence a # S - P or b # S - P.
Conversely, suppose S - P be a prime ideal, then S - P ≠ Ø, S. So that P ≠ Ø, S.

Since S - P is directed above, and then P is directed below. If a,b # P then a,b # S
- P. Since S - P is prime, a Λ b # S - P. us a Λ b # P, and so P is a filter.

Now, to show that P is a prime filter, we suppose if possible Q∩R#P and

and R∩S-P≠Ø, then there exists a # Q ∩ S - P and

with

is is a contradiction.
erefore

is prime.
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CONGRUENCIES ON DISTRIBUTIVE SEMILATTICE

Definition 3.1. Let S be a semilattice. A homomorphism between two meet
semilattices S and T is a map f : S → T with the property that f (a Λ b) = f (a) Λ f (b),
where a,b # S. A semilattice homomorphism is called semilattice isomorphism

eorem 3.2. Let S be any semilattice, which is directed above. en S is
distributive if and only if S/θl is distributive for every subsemilattice L of S.

Proof: Suppose S be a distributive semilattice and L a subsemilattice of S. Let
x,y,z # S such that

such that x Λ y Λ a = x Λ y Λ z Λ a.

such that x Λ a ≤ b, y Λ a ≤ c and b Λ c = z
Now, πL (x Λ a) ≤ πL (b), πL (y Λ a) ≤ πL (c) and πL (b) Λ πL (c) = πL (z).

erefore S/θl is distributive for every subsemilattice L of S.
Conversely, let a,b,and c # S such that aΛb≤c. Choose d # S such that a,b, and

c # (d] and put L = (d]. Since S/θl is distributive, there exists e, f # S suth that
πL (a) ≤ πL (e), πL (b) ≤ πL (f) and πL (e) Λ πL (f) = πL (c) x,y and z # F such
that e Λ f Λ x = c Λ x, e Λ a Λ y = a Λ y and f Λ b Λ z = b Λ z which implies
that e Λ f Λ x = c, e Λ a =a and f Λ b = b. erefore and (e Λ x) Λ (f Λ x)=c.
Hence, S is distributive.

eorem 3.3. Let L be a sub-semilattice of S. If J is an ideal of S/θl, I ={x # S :
πL (x) # J} is an ideal of S. en J is a proper ideal of S/θl if and only if I ∩ L=Ø.

Also, if P is a prime ideal of S such that P ∩ L=Ø then Q ={πL (x) # S/θl: x
# P}is a prime ideal of S/θl.

Proof: Let J be an ideal of S/θl, and I ={x # S : πL (x) # J}, let a # I, b # S such
that b ≤ a. en b Λ x ≤ a for some

and hence b # I. erefore I is an initial segment of S. If πL (a) and πL (b) # J;
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erefore J is an ideal. If a # I ∩ L, then for any x # S, πL (x) = πL (x Λ a)
thus S/θl = J.

Conversely if S/θl = J, then for any x # L, πL(x) # J and therefore I ∩ L=Ø.
Also, let P be a prime ideal of S such that P ∩ L=Ø, then Q is proper ideal of
S/θl and let πL (a) Λ πL (b) # Q, πL (a Λ b) # Q.en a Λ b # P and since P is
prime a # P or b # P.

Hence πL (a) # Q or πL (b) # Q. erefore Q is prime.
eorem 3.4. Let L and M be sub-semilattices of S such that L C M and let f:

S/θl → S/θM if and only if I ∩ L=Ø. be the epimorphism defined by f (πL(x))
= πm(x),

If f is injection, then P∩L=Ø implies P∩M=Ø, for any prime ideal P of S.
Proof: Suppose P be a prime ideal S of such that P∩L=Ø then by eorem 3.2

above, {πL (x) # S/θl} is a prime ideal of S/θl and hence {πM (x) # S/θM: x # P}
is a prime ideal of S/θM, so that P∩M=Ø.

eorem: 3.5. Let F be a filter of S, then the following are equivalent:

1. F is a prime filter
2. F = {πF (x) : x # S - F} is an ideal of S/θF
3. S/θF has a unique maximal ideal.

Proof: (i) -> (ii) Suppose that F is a prime filter, then S - F is a prime ideal.
Let πF (x) # I and πF (y) # S/θF such that πF (y) ≤ πF (x)

erefore I is an initial segment. Let πF(x), πF(y) #I this implies x,y # S - F.
en there exist z # S - F such that x ≤ z and y ≤ z.

Again, there exists a # F such that x Λ a = x Λ a Λ z and y Λ a = y Λ a Λ z
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erefore I = {πF (x) : x # S - F} is an ideal of S/θF. Hence the result.
(ii) -> (iii): For any a # F, πF (a) is the greatest element of S/θF. Hence, every

ideal of S/θF is contained in {πF (x) : x # S - P}.
erefore S/θF has a unique maximal.
(iii)-> (i): Let G be the unique maximal ideal of S/θF and let x and y # S - F.

Since the principal ideals of S/θF generated by πF (x) and πF (y) are proper, and
it follows that πF (x) and πF (y) # G. en, there exist πF (z) # G such that πF
(x) ≤ πF (z) and πF (y) ≤ πF (z). is implies x Λ z Λ a = x Λ a and y Λ z Λ a =
y Λ a for some a # F.

en, there exist b # S such that x≤ b, y≤ b and

, and thus S-F is a prime ideal. Henceforth F is prime filter.
eorem 3.6. Let F be a filter of S. en F is a maximal filter if and only if S/

θF is the two-element chain.
Proof: Suppose F is a maximal filter, then for any x, and y # F, πF (x) = πF (y)

and for any x # F and y # S, πF (x) = πF (y) implies y # F.
Now, let x and y # S-F, Since F is maximal, there exist a,b # F, such that a Λ x

≤ y and b Λ y ≤ x. Hence πF (x) = πF (a Λ x) ≤ πF (y) = πF (b Λ y) ≤ πF (x).
erefore πF (x) = πF (y).
Conversely, suppose that S/θF is the two-element chain. Suppose x, and y # S-

F. Choose an element z # F, such that πF (z) ≠ πF (x). Hence πF (x) = πF (y).
en there exist a # F such that x Λ a = y Λ a and y # F V [x).

erefore, for any x # F, F V [x) = S. us F is maximal. Hence the result.
eorem 3.7. e map F#θF is an isomorphism from the lattice F0(S) of all

non-empty filters S of into a permutable sublattice of the lattice C(S) of all
congruencies on S. Hence {θF : F # F0 (S)}is a distributive and permutable sub
lattice of C(S).

Proof: Suppose I and J are any filters of S. en θi∩J C θi ∩ θj and let (x,y)
# θi ∩ θj, there exist a # I, b # J such that x Λ a = y Λ a and x Λ b = y Λ b.

Now since c # I ∩ J, then (x,y) # θi∩J. Hence F#θF is a lattice
homomorphism.

Also let us consider I, J # F0(S) and θi C θj. Let x # I, choose y # J then there
exist z # I such that x≤ z and y≤ z.
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Now (x,y) # θi C θj and since z # J, we have x # J. ere I C J fore and hence F#θF
is a lattice isomorphism of F0(S) onto the sub lattice {θF : F # F0 (S)} of C(S).

Note that the lattice C(S) of all congruencies on a semilattice S need not be
distributive, even when S is distributive. Hence the result.

Example 3.7. Let

, with partial order given by 0 < a < n, 0 < b < n, for all andwhen everis positive
for

and m<n when ever m-n is positive for all

en S becomes distributive semilattice, with aΛb=glb{a,b} # a,b # S

CONCLUSION

In general, we introduced the notation of natural epimorphism of a semilattice
on the quotient semilattice. Let L and M be sub-semilattices of S such that L C M
and let f : S/θl → S/θm be the epimorphism defined by f (πL (x)) = πM (x). Also,
we can conclude that if f is injection map, then P∩L=Ø implies , P∩M=Ø for any
prime ideal P of S. Additionally, for a distributive semilattice S, let F be a filter
of S, then θF is the smallest congruence on S containing F in a single equivalence
class and that S/θf is distributive. Similarly, map F#θF is an isomorphism from
the lattice F0(S) of all non-empty filters of into a permutable sublattice of S the
lattice C(S) of all congruencies on S.
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