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Abstract: e invasion of ecosystems by exotic species has been
identified as the second cause of biodiversity loss worldwide,
and is one of the most difficult threats to reverse. In Uruguay,
the introduction and spread of invasive alien species (IAS) has
been identified as a serious environmental problem, becoming
perhaps the greatest danger that native forests currently face.
IAS oen represents optical differences in the forest canopy and
can therefore be detected remotely. e two most widespread
and aggressive woody IAS in the country's forests are Ligustrum
lucidum and Gleditsia triacanthos. e objective of this study
was to spatially identify IAS within the native forest of Uruguay,
mainly these two species, using remote sensing techniques. is
work is based on multispectral data from medium-resolution
satellite images (Landsat) and uses the normalized difference
fraction index (NDFI) for classification. e NDFI is sensitive
to canopy coverage and is calculated through a sub-pixel
spectral mixture analysis (SMA), decomposing the reflectance
information for each pixel into fractions. e results showed an
area of 22,009 ha of native forest invaded by these IAS, with an
overall accuracy of 87.6%, representing 2.63% of the total native
forest area in the country. e results presented in this work will
help to geographically analyze the invasion by IAS in the forest,
linking it to possible drivers. Furthermore, this map can now
be used as relevant information when designing IAS prevention,
mitigation, restoration, and eventual eradication strategies in the
country.

Keywords: forest degradation, Gleditsia triacanthos, biologic
invasions, Landsat, Ligustrum lucidum.

Resumen: La invasión de ecosistemas por especies exóticas
se identifica como la segunda causa de pérdida de
biodiversidad a nivel mundial y se ha convertido en una
de las amenazas más difíciles de revertir. En Uruguay, la
introducción y la propagación de especies exóticas invasoras
(EEI) son identificados como graves problemas ambientales,
convirtiéndose quizás en el mayor peligro que enfrentan
actualmente los bosques nativos. Las EEI a menudo representan
diferencias ópticas en el dosel del bosque y, por lo tanto, pueden
detectarse de forma remota. Las dos EEI leñosas más extendidas
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y agresivas en los bosques del país son Ligustrum lucidum y
Gleditsia triacanthos. El objetivo fue identificar espacialmente
las EEI del bosque nativo de Uruguay, principalmente estas
dos especies, utilizando técnicas de teledetección. Este trabajo
se basa en imágenes satelitales multiespectrales de resolución
media (Landsat), utilizando el Índice de Diferencia de Fracción
Normalizada (NDFI) para la clasificación. Este índice es sensible
a la cobertura del dosel y se calcula mediante un análisis
de mezcla espectral de subpíxeles (SMA), descomponiendo la
información de reflectancia de cada píxel en fracciones. Los
resultados mostraron un área de 22009 ha de bosque invadido
por estas EEI, con una exactitud global de 87,6%, representando
un 2,63% del área de bosque nativo. Este trabajo ayuda a analizar
geográficamente la invasión de EEI en el bosque, relacionándola
con posibles causales. Además, este mapa puede ser utilizado
como información relevante a la hora de diseñar estrategias de
prevención, mitigación, restauración y eventual erradicación de
estas EEI.

Palabras clave: degradación de bosques, Gleditsia triacanthos,
invasiones biológicas, Landsat, Ligustrum lucidum.
Resumo: A invasão de ecossistemas por espécies exóticas é
apontada como a segunda causa de perda de biodiversidade
no mundo e se tornou uma das ameaças mais difíceis de
reverter. No Uruguai, a introdução e disseminação de espécies
exóticas invasoras (EEI) é identificada como um sério problema
ambiental, tornando-se talvez o maior perigo que as florestas
nativas enfrentam atualmente. As IAS geralmente representam
diferenças ópticas no dossel da floresta e, portanto, podem ser
detectados remotamente. As duas EEI lenhosas mais difundidas
e agressivas nas florestas do país são Ligustrum lucidum e
Gleditsia triacanthos. O objetivo foi identificar espacialmente
os EEI da floresta nativa do Uruguai, principalmente essas
duas espécies, utilizando técnicas de sensoriamento remoto. Este
trabalho é baseado em imagens de satélite multiespectrais de
média resolução (Landsat), utilizando o Índice de Diferença
de Fração Normalizado (NDFI) para classificação. Este índice
é sensível à cobertura do dossel e é calculado usando análise
de mistura espectral de subpixel (SMA), decompondo as
informações de refletância de cada pixel em frações. Os
resultados mostraram uma área de 22009 ha de floresta invadida
por essas IAS, com uma precisão global de 87,6%, representando
2,63% da área de floresta nativa. Este trabalho ajuda a analisar
geograficamente a invasão de EEI na floresta, relacionando-a com
possíveis causas. Além disso, este mapa pode ser usado como
informação relevante no desenho de estratégias de prevenção,
mitigação, restauração e eventual erradicação dessas EEI.

Palavras-chave: degradação florestal, Gleditsia triacanthos,
invasões biológicas, Landsat, Ligustrum lucidum.
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1. Introduction

e invasion of ecosystems by exotic species is the second cause of biodiversity loss worldwide, surpassed
only by the destruction of habitats(1). ese species cause environmental disturbances, including changes in
the composition, structure, and processes of ecosystems, they can generate economic, social, and cultural
problems, as well as problems in human and animal health(2)(3)(4). In Uruguay, the introduction and
expansion of invasive alien species (IAS) has been identified as a serious environmental problem, particularly
for biodiversity, becoming perhaps the greatest danger that native forests currently face(5).

In Uruguay, this process most likely has its origins in commercial and ornamental plantations near
the native forest, which seeds are disseminated by different natural agents, making it a highly conducive
environment for its growth and propagation(6). e conditions of forest soils, rich in organic matter and
adequate levels of humidity, together with the protection against climatic agents and the action of livestock,
provide a favorable environment for the development of IAS(6)(7).

Although some authors estimate that Uruguayan forests have increased in area in the beginning of the 21st

century, an important degradation process has coincided with this increase(8)(9), particularly in the riparian
forests of the southern and western coastal regions(10).

With the growing relevance of this issue, there is a need to advance research that allows for a clear diagnosis
of the current situation of IAS, its territorial extension, its potential expansion, its impact on the integrity
of forest ecosystems, and its ecological and socio-economic effects. To adequately manage forests and their
services, via efforts in monitoring deforestation, special attention should be paid to the process of forest
degradation caused by IAS in Uruguay.

Due to its continuity in time and its complete and consistent spatial coverage, satellite data provide
valuable information, complementary to site-based measurements, for the detection of forest degradation
processes(11). Some IAS invasions are subtle, occurring on a small scale or in the understory, and are therefore
difficult to detect using satellite data. However, many invasive tree species can be perceived in the forest
canopy, even dominating it, and can be remotely mapped(12). IAS oen presents optical differences from
native species and, therefore, can oen be discriminated. e efficiency of detecting these species depends
mainly on the sensor´s resolution (spatial, temporal, and spectral) and the differences (e.g. phenology,
structure) between the IAS and nearby native vegetation.

e two most important invasive woody species in survey plots of the National Forest Inventory (NFI)(13)

are Ligustrum lucidum (W.T. Aiton, Oleaceae) and Gleditsia triacanthos L. .Fabaceae), which will be the
subject of this study.

Ligustrum lucidum or glossy privet is a woody species native to China and Japan, introduced in Uruguay
in the mid-19th century(14). It is an evergreen species, unlike the native forest, with glossy privet with leaves
all year round(15). It is associated with abundant ripe fruits (berries) throughout the winter and until the
beginning of spring(16), a period in which the production of native fruits for birds decreases considerably. Its
seeds have high germination power, fast growth, and can thrive under both sun and shade conditions(17).

ese features, together with their abundant fruiting and wide tolerance to environmental conditions,
allow it to establish itself as a dominant species in the forest, reducing or locally extinguishing the populations
of some native species. Glossy privet invasion has been shown to limit native plant biodiversity and prevent
the regeneration of native forests(18), possibly due to reduced light levels and soil fertility, with a high
mortality of native seedlings(19). us, this species alters the structure, functionality, and composition of
native ecosystems(20).
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In Uruguay, glossy privet is one of the most invasive species with the greatest territorial significance(21), and
is one of the 100 most damaging invasive species on a global scale(22). Its abundant presence has been borne
out in the field, particularly in highly disturbed sites, such as those located on the sides of the bridges(23).
However, there are no known records of when its expansion began, nor information regarding the drivers
of it(21). Disturbances in forests can oen increase the spread of this species or drive its invasion into new
environments, resulting in new distribution patterns(24).

Gleditsia triacanthos or honey locust is a species with one of the greatest potentials to affect native
Uruguayan ecosystems(7). It is a deciduous species native to the south-central region of the United States,
which blooms in spring in the southern hemisphere, bearing fruit from early summer until late autumn(25).

In Uruguay, it is categorized as a IAS with a wide distribution and adverse impact(7). Some of the
characteristics that favor its rapid expansion are its high resistance to environmental variations, such as
floods or droughts, its high tolerance to contamination and soil salinity, its adaptation to any type of soil,
its high growth rate, clonal and sexual reproduction, short juvenile period, abundant seed production, high
germination capacity, and almost complete absence of pests and associated diseases affecting it(26)(27).

e main dispersal avenues of its seeds are watercourses and cattle, which forage their fruits and facilitate
their germination(28). Animals, particularly cattle, contribute to consolidating the invasion process of this
species by transporting the seeds and increasing their viability, favoring germination via the process of
scarification(29).

Honey locust inhabits a wide variety of environments, but is commonly found in fertile, moist soils near
streams. In Uruguay, the riparian forest seems to constitute its preferential habitat(30), although its spread
includes prairie environments, marshes, and grasslands, lending it to an almost total replacement of native
species(31).

Despite extensive experience in IAS control and advances in modelling their distribution patterns, there is
a persistent lack of quantified and spatially explicit information on invaded forests in the Uruguay. us far,
the majority of studies have used field data, and very few are based on remote sensing data. Some works in the
region can be highlighted, such as the one carried out in Tucumán, Argentina, which was based on satellite
images and in which differences in the phenology and productivity of forests invaded by glossy privet were
observed. ese presented higher NDVI values than nearby native forests, mainly because of the differences
in the near-infrared band(32)(33). In a study carried out in the Yungas of north-eastern Argentina, higher
values of NDVI (8.5%) were also observed in glossy private forests than in native forests(34). Hoyos and
others(18) also used Landsat TM images to map areas of native forest invaded by glossy privet in an area of
Córdoba, Argentina, using training points for classification based on the NDVI index(18).

e objective of the present study was to spatially identify IAS within the native forest of Uruguay, mainly
glossy privet and honey locust, using remote sensing techniques. e goal was to detect glossy privet and
honey locust due to their nature as widespread and aggressive IAS tree in Uruguayan forests(7), and the two
most frequently observed IAS at the sampling points of the NFI(13).

To this end, we proposed classifying the country's forest into two classes –invaded and not invaded by
the two prioritized IAS–, based on medium-resolution satellite images, evaluating the normalized difference
fraction index(35) potential to reliably detect forest degradation by IAS. is methodology must be replicable
over time to monitor its evolution over a given period.

e importance of this work lies in the usefulness of the generated spatial information for monitoring
these species. Quantifying this invasion and obtaining a spatially explicit product at a national scale is an
important tool to identify and prioritize areas for the control of these species, as well as to relate its evolution
and distribution to possible drivers. A better understanding of these causes could be essential to identify the
forests or sites at greater risk of being invaded by IAS. In this way, through appropriate forest management,
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the control and eventual eradication of these species could be more efficient, preventing the contamination
of the most pristine forests and achieving a better conservation of forest biodiversity.

e Uruguayan woody flora is strongly influenced by neighboring provinces, especially from the sub-
tropical Paranaense and Chaqueña floras(36). Based on the physiographic characteristics of the environments
and their predominant species, the most widely used classification of native forest types in Uruguay in
the literature(8)(10) is as follows: riparian forest, hillside forest, ravine forest, open forests, palm groves,
psamophilic forests, and swamp forests.

2. Materials and methods

2.1 Study area

is work was performed for the entirety extension of Uruguay. With a 173196 km. territory, this country
is located between parallels 30° and 35° south latitude, and meridians 53° and 58° west longitude. e
country’s climate is classified as a subtropical humid climate, temperate, rainy, and rainfall throughout the
year, according to the Koppen climate classification. Uruguay is located in a transition biogeographic zone
between different climatic areas called Pampean Province(37), characterized by a subtropical grassland matrix
that is strongly modified by agroforestry and livestock activities. According to the national native forest
cartography for 2016, it has an area of 835349 ha of native forest, almost 4.8% of the country's total area(38).

2.2 Spatial data and imagery

e national native forest cartography for 2016, produced by Sentinel-2 data classification, was used as a
baseline in the construction of the IAS map, aiming to mask areas without native forest cover(38).

Data from the sampling plots of the NFI were used for the accuracy assessment. Of the total forest plots
surveyed in the NFI (1490), 283 plots were registered with the presence of at least one alien species identified
in the plot or its surroundings (18.99%). From the surveyed plots, 199 showed some individuals of Ligustrum
sp. or Gleditsia triacanthos, corresponding to 13.35% of the total sampling plots.

In addition, to estimate the accuracy of the map aer its final edition, georeferenced field records of IAS
from the Biological Invasions Database for Uruguay(39) were used, along with field IAS records of REDD+
collaborating researchers. Another data source, the forest plantations map(40), was used to visually edit the
map and eliminate errors in the algorithm with planted forests.

is work is based on surface reflectance data from the collections of the Landsat 5, 7, and 8 satellites,
with multispectral sensors (TM, ETM +, and OLI), selecting images from Tier 1 (L1T), in which the
USGS presents inter-calibrated data that already meets the geometric and radiometric quality requirements,
so that no additional rectifications are required. ese products contain a topographic correction for the
displacement of the terrain due to relief. e only correction made was the masking of the cloudy pixels of
the images, both with clouds and cloud shadows on the Google Earth Engine(41) platform.

2.3 eoretical approach

e use of sub-pixel spectral mixture analysis (SMA), a technique based on the spectral modelling of images as
a linear combination of pure spectra(42), has been a breakthrough for forest disturbance mapping. Monteiro
and others(43) began to use these models for the detection of selective logging and fires in the Amazon forests
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of Brazil. Souza(44) proposed integrating the fractions of spectral endmembers of green vegetation (GV), soil,
and non-photosynthetic vegetation (NPV) to map forest degradation(44).

Although several studies have been conducted on this subject, it is worth highlighting one by Souza
and others(35), who proposed a new spectral index to improve the detection of forest canopy damaged by
degradation, derived from selective logging and associated fires. is index is the normalized difference
fraction index (NDFI), which is sensitive to canopy coverage and synthesizes reflectance information for
each pixel, decomposed into the aforementioned fractions(35).

To calculate this index, an SMA is applied to the surface reflectace information from the multispectral
image to decompose each pixel into sub-pixel purer material fractions or endmembers: GV, Soil, Shade, and
NPV(42). e index is calculated as:

NDFI values range from ‒1 to 1, theoretically being higher in dense, undisturbed forests, with high canopy
coverage, given by a combination of high GV fraction and low soil, shade, and NPV fractions. High NDFI
values occur when the fractions of the spectral signature corresponding to soil and NPV remain close to zero,
as a product of a completely covered canopy. e other two fractions fluctuate with seasonality, with the
Shade fraction being higher in winter and lower in summer. On the other hand, the GV fraction generally
presents high values in summer and low values in winter.

Based on this index, Bullock and others(45) used an SMA on Landsat time-series data to detect changes in
forest cover, both deforestation and degradation in the state of Rondonia, Brazil(45). is method was applied
using the Google Earth Engine(41) tool. Based on this research and the resulting algorithms, we proposed the
detection of forest degradation using the NDFI for the classification of IAS.

As an example, the graphs below (Figure 1) show the evolution of NDFI over seven years (January
2010 to December 2017) in sites with no presence of IAS (A), extreme invasion of glossy privet (B), and
extreme invasion of honey locust (C). is is based on data from NFI sampling plots and high-resolution
complementary images. Some seasonal behavior of the index can be observed in A, most likely due to leaves
falling (autumn-winter), and taking higher values in general during spring and summer. Forests in Uruguay
can be classified as seasonal semi-deciduous, characterized by the senescence of 30-60% of the leaf biomass
during autumn and winter(46), clearly differentiating itself from the glossy privet that maintains its foliage
throughout the year.

Observing the evolution of NDFI in a forest with a ground certainty of invasion by glossy privet, the
values were very close or equal to 1 throughout the year, except for some specific events. Similar behavior
of the NDFI was observed in the data from adult commercial plantations of exotic species. For this reason,
we decided to create the map using masking through a native forest layer to eliminate false positives and any
confusion with commercial plantations. e same occurred to some extent in areas severely invaded by honey
locust. However, in this case, this occurred with a notorious seasonality, typical of the species, where NDFI
values close to 1 can be observed during the spring-summer season, when there is greater leaf coverage. For
this reason, it was necessary to filter from the collection of available images, namely those acquired on a date
such that this species had high leaf coverage and, therefore, high NDFI (December 1 to March 1).
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FIGURE 1
Comparison of the NDFI evolution (2010-2017) for three sites: (a) forest with no

presence of IAS; (b) extreme invasion of glossy privet; (c) extreme invasion of honey locust

In summary, it can be observed that sites invaded by the two species studied behave very differently from
the native forest with respect to this index. is may be due to the fact that these IAS form a denser and
more homogeneous canopy than native forests, completely covering the ground and therefore reducing the
soil fraction.

It is necessary to assume an operational definition of the degree of invasion that is supposed to be detected
due to the limitations of the sensor (Landsat). Because of the spatial resolution of the images (30 m), the
sensor is likely to detect highly invaded forest sites or IAS-dominated stands. In contrast, it has difficulty
detecting sites with the presence of few IAS individuals or understory invasion. In this case, the resulting
map would not correspond to a map of the absolute presence of IAS in Uruguayan forests.

For the generation of the IAS map, Google Earth Engine(41) was used to capture forest areas with high
NDFI values throughout the country, adapting a script developed by Bullock and others(45), originally
designed to detect disturbances in tropical forests. Certain considerations were considered:



Agrociencia Uruguay, 2022, vol. 26, no. 1, e653, January-June, ISSN: 2730-5066

PDF generated from XML JATS4R

- Landsat images were filtered by the acquisition date, using data from December 1 to March 1. e
intention was to detect, in addition to glossy privet, areas dominated by honey locust or other deciduous
exotic species, in the period of maximum leaf area, when NDFI was at its highest values.

- All Landsat images used were transformed into the mentioned endmember fractions using a script
adopted from Bullock and others(45), which uses the “unmix” function in Google Earth Engine(41), unmixing
each image pixel to return endmember proportions that sum to one.

- e calculation of the NDFI was performed on a five-year image stack (2013-2018) for the mentioned
dates, to exclude the occurrence of extreme events, such as floods, where the NDFI may decrease more than
usual. For this, the median of each pixel was calculated for each of the endmembers (“GV”, “Shade”, “NPV”,
“Soil”) during the selected dates. With these values, the average of the NDFI was calculated for each year,
and an average was found for the five-year period.

- Pixels were mapped with an average of the previous calculation greater than 0.99. is threshold was
defined empirically by analyzing graphs of the index for georeferenced sites with field certainty of severe
invasion.

Using QGIS(47), the generated layer was clipped by the limits of the 2016 native forest map. us, most
commission errors generated by the commercial plantations were discarded. Nevertheless, some confusion
may arise as a result of certain plantations mapped by mistake in the native forest cartography (false positives).
Moreover, invaded forest areas may have been omitted because they are not part of the forest map (false
negatives).

e final edition process consisted in creating a grid to divide the country into quadrants, examining
them in an orderly fashion, editing the map visually by eliminating pixels confused with exotic commercial
plantations or shade and shelter plantations using the forest plantation layer(40). Some less relevant alien
species with similar characteristics may also be mapped with this methodology (as part of the commission
error).

e results will be presented by Department and by ecoregion to analyze the geographical distribution of
these IAS in the country, along with an invasion heat map.

2.4 Accuracy assessment

All maps built from image classification through remote sensing contain errors. ese errors are unavoidable
and are a product of many factors, including clouds, class similarity, and climate variability(48). e most
widely used methods for accuracy assessment are based on a confusion matrix(49). e confusion matrix
is a table where the results of the map classification are displayed, along with the classification observed
in a reference sample. e classes considered are the pixels belonging to the coverage of the IAS map and
its complement (No-IAS). We assumed that the reference classification had the best assessment of the
ground condition, and the global classification accuracy was defined as the proportion of correctly mapped
cases. User’s accuracy was a proportion of cases mapped as IAS that was actually IAS “on the ground”. e
producer’s accuracy consisted in the proportion of cases of IAS on the ground, which was also mapped as
IAS(50).

Cohen’s kappa coefficient(49) is another statistic based on the confusion matrix, measuring the difference
between the observed map-reality agreement and that which could be expected simply by chance. e kappa
coefficient for the two classes is calculated as follows:
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where  is the total number of pixels in the map sample;  is the number of observations in the main
diagonal of the confusion matrix;  are the marginal totals for the rows, and  are the marginal totals of
the table columns. e maximum and min-imum values of kappa depend on all the cells of the confusion
matrix and not only on the values of the main diagonal; if all the elements outside the diago-nal are equal
to zero, we would have complete agreement, and K = 1. e greater the agreement, the higher the value of
the kappa coefficient.

Although the NFI sample was a systematic sample with national coverage, its sample design was not
proposed for map accuracy assessment and may have limitations in making inferences. Furthermore, the
selection mechanism for field samples corresponding to other data sources was unknown. To perform the
accuracy analysis, we assumed that sample points were selected using simple random sampling. us, a
confusion matrix was obtained directly from the sample.

2.5 Transparency of data

Data not available: the data set that supports the results of this study is not publicly available.

3. Results

e following map (Figure 2) of the invasion of the studied IAS within the native forest was obtained for
the period from 2013 to 2018 (highlighting its representation for better display), estimating a total area of 
22008.9 ha of native forest with a high invasion of these IAS. is area represents 2.63% of the total 835349
ha of native forests in Uruguay(38).

FIGURE 2
Invasive alien species in Uruguayan native forest distribution map
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3.1 Accuracy assessment results

Accuracy was assessed using a stratified reference sample, where the strata were map classes (IAS - No-IAS).
From the NFI sample points, only plots where the severity of invasion of the species studied in this work
was moderate, serious, or extreme, according to IUCN-CMP(13), were used, together with plots without any
IAS to complete the reference sample. For the IAS class, 212 field observations were selected, and 488 for
No-IAS strata. e sample of 212 points with IAS came from different sources (NFI, InBUy, and REDD+
Project collaborators). e 488 sample points belonging to the No-IAS strata were selected from the NFI
(from a total of 1207 cases). Results are presented in Table 1.

TABLE 1
Results of the accuracy assessment of the IAS map

e global accuracy obtained was 87.6%, and the user’s and producer’s accuracy were 83.4% and 73.6%,
respectively. e results show a high global accuracy (87.6%), as any value greater than 85% is considered a
high value of accuracy(51). However, the kappa value obtained was 0.6955, and kappa values between 0.40
and 0.80 represent moderate agreement(52).

3.2 Geographic distribution analysis

Table 2 shows the area occupied by the IAS and its percentage with respect to the total forest area,
discriminated by department. Considering the percentages of invaded forests, it was observed that the
most affected departments were Montevideo, Canelones, San José, and Colonia. On the other hand, the
departments of Tacuarembó, Rivera, Artigas, and Salto have the lowest percentage of invaded forests.

is is consistent with the results obtained in the NFI, where the highest relative percentage of plots with
IAS was recorded in the southern region of the country, where the departments of Colonia, Canelones,
Montevideo, San José, and Soriano registered a relative percentage greater than 50%. In other words, in more
than half of the plots surveyed for these departments IAS were registered(13).

By analyzing the forest areas invaded by this IAS and its corresponding percentage for each ecoregion of
the country(53), clear differences were observed among them. e highest percentage of invasion by ecoregion
was observed in the Graven Santa Lucía region (17.65%), followed by the Escudo Cristalino region (7.20%),
and in third place the Cuenca Sedimentaria del Oeste region (4.12%). In turn, the ecoregion with the least
invasion corresponded to Cuesta Basáltica. is coincides with the information from the NFI, where a
similar distribution was found, also highlighting the ecoregion of Graven Santa Lucía, where 68% of the
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sample plots had some IAS, followed by the Escudo Cristalino with 65%, and, third, Cuenca Sedimentaria
del Oeste, with 36% of the surveyed plots (Table 3)(13).

Figure 3 shows a heat map of the presence for the two IAS studied, which can be considered a measure of
the concentration of invaded forest sites. It is a density estimate (kernel regression) generated using QGIS(47).
In this way, the heat map represents an index of the concentration of invaded forest polygons, weighted by
the surface of these polygons.

TABLE 2
IAS area ha forest area ha and percentage of invaded area by department
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TABLE 3
IAS area (ha), forest area (ha) and percentage of invaded area
by ecoregion. Ecoregions proposed by Brazeiro and others(53)

FIGURE 3
IAS concentration heat map

In the previous figure, the invasion of these two IAS is shown to have reached almost the entire territory to
a greater or lesser extent. However, it also appears that the areas with the highest concentration were located
on the west and south coast of the territory, mainly on the margins of the Río de la Plata and Uruguay rivers.
On the contrary, we found that the northern region of the country was less affected by IAS than the rest of
the country. Finally, some hot zones, mainly in the north, were found to be in the vicinity of important cities
(e.g. Melo, Rivera, Salto, Paysandú, Durazno).
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4. Discussion

e approach proposed in this work represents the first useful and reliable tool for the mapping of
degradation processes associated with IAS in Uruguay. is approach is characterized by the use of remote
sensing techniques, and provides a basis for future works seeking to refine our results and detect other IASs.

According to the results obtained, a satisfactory level of accuracy was achieved, considering the complexity
of detecting this type of process. e global accuracy obtained was 87.6%, which is comparable with the
accuracy achieved in studies carried out in Argentina when mapping glossy privet invasion based on Landsat
TM images using NDVI of 89%(18) and 84%(54).

is map helped to analyze the behavior of the most damaging IAS in the territory studied, linking them
with possible drivers of degradation, and identifying and prioritizing areas for their control. Although there
is a marked regionalization in the distribution of these IAS, they were found to have reached almost all the
forests in the territory, establishing themselves as a real threat to the ecosystems found in the corresponding
regions. Furthermore, our results indicate that the spread of IAS in the territory is even greater because this
technique detects highly invaded areas, where these species are the dominant stands in the forest canopy.

e occurrence of hot zones near important cities, in terms of population, is reflected in the literature(18)(20)

(54), where the link of the presence of IAS is pointed out, possibly due to the use of these species for ornamental
purposes. For example, greater heat spots of glossy privet invasion were detected in the peri-urban areas of
the largest cities in the northwest region of Argentina, where a relationship between the size of the cities and
the area invaded by this species was observed(20).

A comprehensive analysis regarding what type, intensity, and extension of forest disturbances are those
that favor the invasion of IAS in Uruguay is currently lacking(21). However, there is enough evidence in
the literature to affirm that areas with a high degree of disturbance (e.g. land-use changes, selective logging,
overgrazing, landscape fragmentation, urbanization, construction of bridges, and roads) generally have a
higher degree of invasion, which could be mediating or enhancing the invasion process(24)(55)(56). Considering
this, the information obtained could help to identify these disturbances as drivers of the invasion of IAS,
linking its distribution with localized historical data of land-use changes and disturbances in the forest. It can
be hypothesized that the high concentration of IAS in the south and west coasts of Uruguay may be linked
to the fact that it is an area characterized by its high urbanization and intensive agricultural land use, which
means a high degree of anthropization.

On the other hand, we found that the northern and northeastern regions had a lower presence of the
prioritized IAS compared to the rest of the country. is may be due to various factors, including that forests
in this area are further from the propagule sources marked as invasion heat zones (southwest); ravine forests
that are present almost entirely in this area are generally less intervened forests and are difficult to access
for livestock or for their exploitation. erefore, they are generally in a better conservation state, reducing
their vulnerability to invasions. Furthermore, these subtropical forests have greater biodiversity(10), a greater
number of species per forest stratum, and a greater number of strata. us, the lower occurrence of invasion
found in this region may be related to the hypothesis proposed by Elton(57), wherein the resistance of a
biotic community to biological invasions increases in proportion to the richness of species present in the
community(57).

Being able to spatially detect and quantify the invasion of IAS within the native forest is a key tool for
defining prevention, monitoring, control, combat, and eradication strategies for invasive species. Analyzing
the spatial distribution of the IAS, it was clear that there is a need to regionalize their management and
control strategies, with different approaches and priorities depending on their location, severity of invasion,
species involved, and valorization of the actually or potentially affected ecosystems.
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Our findings allowed us to locate areas of potential IAS expansion due to their proximity to propagule
sources, that is, sites with a high probability of being invaded in the future due to their proximity to areas
already invaded and the pressure exerted by these propagules. is information can be used as an instrument
for the implementation of strategies to prevent the entry of IAS into those sites. For example, considering
the lower degree of invasion of the northern forests based on the results, strategies to prevent the entry of IAS
could be implemented for this particular area. To this end, an initiative that instructs on the early detection of
young individuals from prioritized IAS, stimulating their early extraction, could help prevent these invasions
and keep the northern forests of the country in a better condition. A different approach should be proposed
for the most affected areas of the south and west coast, where efforts should be focused on other objectives, in
this case, prioritizing sites for the control and combat of these species. In any case, the proposed methodology
can be used as a complement to the field data because it will probably be able to capture sites dominated by
these IASs.

It is worth noting that, in most of the field data used for the evaluation, the degree of invasion was
measured according to a relative criterion of presence of IAS, sometimes in the nearby area of the plot, and
without having dasometric or phytosociological data of the IAS. erefore, there may be cases in which a
high degree of presence of IAS was registered in an NFI sample plot, but all these individuals were found
in the understory, without being reflected in the canopy. In this case, the methodology may not be able to
detect this invasion, forming part of the omission errors. Another situation arises with the date of NFI plots,
which was carried out in three stages, 2009-2010, 2011, and 2014-2016(13). It may happen that at the time
of NFI data collection, some plots did not show the presence of IAS and now they do. is situation also
contributes to obtaining a higher omission error.

5. Conclusions

e use of medium-resolution satellite images (Landsat mission) to calculate the index NDFI has the
potential to detect degradation in Uruguay´s native forests due to the invasion of alien species. In this work,
it was possible to spatially identify areas dominated by IAS (at least for the two prioritized species, glossy
privet and honey locust) with a satisfactory level of precision, considering the complexity of detecting this
type of process. e classification obtained an overall accuracy of 87.6%, with an overall error of 12.4% and
kappa coefficient of 0.695.

e quantitative and spatially explicit measure of these biological invasions acts as an effective indicator of
forest degradation that is replicable in future studies to assess trends over time, considering the continuous
monitoring of these invasions, as well as in reports at both national and international levels.

As such, this work helps to visualize and geographically analyze the invasion by IAS of the native forest,
contributing to the knowledge of the distribution of these species. e results showed that an area of 22009
ha of native forest in Uruguay was invaded by IAS, which corresponds to 2.63% of the total native forest
in the country.

In addition, the departments of the country most affected by these invasions were identified in this
study, as well as the respective most affected ecoregions, thus improving the efficiency of possible invasion
prevention, control, and mitigation actions of these invasive species. e highest concentration of sites
invaded by IAS occurs in the southwestern region of the country, which is consistent with the available
information collected in the NFI sampling plots(13); also coinciding with the presence of IAS in the Invasive
Alien Species Database(39), as well as with much of the bibliography. e coastal departments of Montevideo,
Canelones, San José, and Colonia are the ones with the highest percentage of IAS with respect to their forest
area. On the other hand, the departments of Tacuarembó, Rivera, Artigas, and Salto were the least affected
in terms of the percentage of forest invaded.
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is map will help to identify priority sites of native forest for conservation, based on their ecological
relevance and their invasion by IAS. In this way, proposals for local actions can be drawn up, focused on the
conservation of certain sites, and on the mitigation or prevention of impacts derived from invasions by exotic
species within the forest. e results of this study can also be used to design a IAS management plan at the
national level and for possible ecological restoration actions at the site scale. Finally, further analysis of the
information provided in this work could be used to identify possible drivers of species invasion.
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