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Abstract: ‘Mosca de la bichera’ or simply ‘bichera’ are common
names given in Uruguay and the region to the primary
myiasis-causing species Cochliomyia hominivorax, the New
World Screwworm (NWS) fly (Diptera: Calliphoridae). Myiasis
happens when dipteran larvae infest live animals at least during
some developmental phase to feed on host’s flesh and fluids.
For the NWS fly it is mandatory that all three larvae phases
develop on living tissues of warm-blooded vertebrates, including
humans. Unsurprisingly, this parasitic behavior causes great
profit losses to the livestock industry and is also considered a
neglected public health issue. NWS is endemic from the tropics
and subtropics of the Americas, but has been eradicated from
North and Central America through a Sterile Insect Technique
(SIT) based Area Wide - Integrated Pest Management (AW-
IPM) program that lasted more than 50 years. Since 2004, a
permanent barrier is actively maintained in Darien, along the
Panama-Colombian border, by releasing 14 million sterile flies
per week to avoid reintroductions. Due to its direct and indirect
impact on the national economy, the logistic complexity and
the cost of SIT control programs, much discussion is underway
in Uruguay about NWS fly eradication. Direct economic losses
due to myiasis in Uruguay oscillate between USD 40 and
154 million annually (i.e., between 2-8% of livestock Gross
Domestic Product, GDP). Currently, the Food and Agriculture
Organization of the UN/International Atomic Energy Agency
(FAO/IAEA) and the US Department of Agriculture/Panama
United States Commission for the Eradication and Prevention
of Screwworm/ Ministry of Livestock, Agriculture and Fisheries
(USDA/COPEG/MGAP) have been working on eradication
proposals for Uruguay. Cost-benefit analysis of each group
concluded that a net present value of around USD 98 million
and USD 146 million could be achieved, respectively, supporting
the positive impact of NWS fly eradication at local farmers
and the whole livestock sector levels. e main challenge of
this endeavor is to find a way to keep the myiasis-free status
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of Uruguay in case that its neighbors, Argentina and Brazil, do
not engage in a similar program, at least for their southernmost
region. Here we review the bulk of bibliography produced
since the beginning of NWS eradication programs in North
America during the 40s decade, its life cycle and parasitic
lifestyle as well as many aspects of its population genetics
and ecology. We further discuss promising biotechnological
approaches under active development based on transgenesis
and CRISPR/Cas genome-editing, that are considered the new
avenue in insect-control strategies. Balance among innovation
and regulation framework is considered based on lessons learned.
Currently, a CRISPR/Cas gene editing strategy for gene drive is
being investigated in Uruguay, a development conducted with
national funds, what guarantees its complete control and local
institutions, authorities and ultimately livestock producers can
be the biotechnology owners. Finally, we highlight the know-
how that will be generated opening the possibility to locally
develop new genetic-based control strategies for other parasites
and/or vector insects of high veterinary and public health
relevance.

Keywords: biotechnology, CRISPR, economic impact,
ectoparasite, screwworm.

Resumen: “Mosca de la bichera” o “bichera” son nombres
comunes que en Uruguay y la región se da a Cochliomyia
hominivorax .Diptera:Calliphoridae), principal agente etiológico
de miasis primarias. La miasis ocurre cuando larvas de
dípteros infestan animales vivos y al menos durante una
parte de su desarrollo se alimentan de los tejidos y fluidos
del hospedero. La bichera es un parásito obligatorio y sus
tres fases larvarias se desarrollan en los tejidos vivos de
hospederos de sangre caliente, incluyendo al hombre. Este
comportamiento parasitario causa grandes pérdidas económicas
al sector ganadero, además de considerarse un problema
desatendido de salud pública. .. hominivorax es endémica de
las regiones tropicales y subtropicales de América, pero fue
erradicada de América del Norte y Central por un programa,
que se extendió por más de 50 años, de Manejo Integrado
de Plagas en Áreas Extensas (en inglés AW-IPM) basado
en la Técnica del Insecto Estéril (TIE). Desde 2004, se
mantiene una barrera en Darién, frontera entre Panamá y
Colombia, donde se liberan 14 millones de moscas estériles/
semana para evitar su reintroducción. Debido al impacto directo
e indirecto en la economía nacional, la compleja logística y
el costo del control basado en TIE, Uruguay actualmente
está discutiendo estrategias para su erradicación. Las pérdidas
directas por miasis en Uruguay oscilan en USD 40-154
millones anuales (2-8% PIB de ganadería). Actualmente, la
Organización de las Naciones Unidas para la Alimentación y
la Agricultura/Organismo Internacional de Energía Atómica
(FAO/OIEA), así como el Departamento de Agricultura
de Estados Unidos/Comisión Panamá Estados Unidos para
la Erradicación y Prevención del Barrenador del Ganado/
Ministerio de Ganadería, Agricultura y Pesca (USDA/COPEG/
MGAP) han estado trabajando en propuestas de erradicación
para Uruguay. El análisis de costo-beneficio de cada grupo
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indica un valor neto de aproximadamente USD 98 millones
y USD 146 millones, respectivamente, indicando el impacto
positivo de la erradicación de la mosca de la bichera para los
productores locales, así como para todo el sector ganadero. Sin
embargo, una vez alcanzado el estado de libre de miasis en
Uruguay, el principal desafío será mantenerlo si Argentina y
Brasil no promueven un programa similar, al menos en la región
pampeana. Aquí realizamos una revisión bibliográfica, desde
el comienzo -durante la década del 40- hasta la erradicación
en América del Norte, así como ciclo de vida y parasitismo,
y aspectos de genética de poblaciones y ecología. Además,
discutimos algunas herramientas biotecnológicas, basadas en
transgénesis y edición génica por CRISPR/Cas, que están en
desarrollo y prometen transformarse en las nuevas estrategias
de control de insectos. Discutimos el balance entre innovación
y regulación con base en lecciones aprendidas. Actualmente,
en Uruguay se investiga una estrategia de edición génica por
CRISPR/Cas para desarrollar un gene drive con financiación
de fondos nacionales, lo que garantiza su completo control, e
instituciones locales, autoridades y productores pueden ser los
propietarios de la biotecnología. Finalmente, el conocimiento
generado abre la posibilidad para desarrollar localmente nuevas
estrategias biotecnológicas para el control de otros parásitos y/o
insectos vectores relevantes en salud animal y pública.

Palabras clave: biotecnologia, CRISPR, impacto económico,
ectoparasito, barrenador.
Resumo: “Mosca-da-bicheira” ou “bicheira” são nomes comuns
utilizados no Uruguai e na região para Cochliomyia hominivorax
(Diptera: Calliphoridae), principal agente etiológico de miíase
primária. A miíase ocorre devido a infestação de animais vivos
por larvas de dípteros que, pelo menos durante uma parte
do desenvolvimento, se alimentam dos tecidos e fluidos do
hospedeiro. A mosca-da-bicheira é um parasita obrigatório
e os três estágios larvais se desenvolvem nos tecidos vivos
de hospedeiros de sangue quente, incluindo o homem. Esse
comportamento parasitário causa grandes perdas econômicas na
pecuária, além de ser considerado um problema negligenciado
de saúde pública. A espécie C. hominivorax é endêmica das
regiões tropicais e subtropicais da América, mas foi erradicada
da América do Norte e Central por um programa, que se
estendeu por mais de 50 anos, de Manejo Integrado de
Pragas em Áreas Extensas (em inglês AW-IPM) baseado na
Técnica do Inseto Estéril (TIE). Desde 2004, mantém-se
uma barreira em Darien, fronteira entre Panamá e Colômbia,
onde são liberadas 14 milhões de moscas estéreis/semana,
para evitar sua reintrodução. Devido ao impacto direto e
indireto na economia nacional, a complexa logística e custo
do controle baseado na TIE, o Uruguai atualmente está
discutindo estratégias para sua erradicação. As perdas diretas
por miíase no país oscilam entre USD 40-154 milhões anuais
(i.e., 2-8% do PIB da pecuária). Atualmente, a FAO/IAEA
(Food and Agriculture Organization of the United Nations/
International Atomic Energy Agency) e USDA/COPEG/MGAP
(Departamento de Agricultura dos Estados Unidos/Panama
United States Commission for the Eradication and Prevention
of Screwworm/ Ministério de Pecuária, Agricultura e Pesca do
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Uruguai) tem trabalhado em propostas para a erradicação no
Uruguai. A análise de custo - benefício de cada grupo indica
um valor líquido de aproximadamente USD 98 milhões e USD
146 milhões, respectivamente, indicando o impacto positivo
da erradicação da mosca-da-bicheira para os produtores locais,
assim como para toda a pecuária. Porém, uma vez alcançado
o estado de livre de miíase no Uruguai, o principal desafio
será sua manutenção caso Argentina e Brasil não iniciem
um programa similar, pelo menos na região pampeana. Neste
contexto, realizamos aqui uma revisão bibliográfica, incluindo
o programa de controle na América do Norte e Central,
desde o seu início durante a década de 1940 até a erradicação
da espécie nestas regiões, bem como informações sobre o
ciclo de vida e parasitismo, e também aspectos da genética
de populações e ecologia. Além disso, discutimos algumas
ferramentas biotecnológicas, baseadas em transgênese e edição
gênica por CRISPR/Cas, em desenvolvimento e que prometem
se transformar nas novas estratégias de controle de insetos.
Discutimos o balanço entre inovação e regulação com base nas
lições aprendidas. Atualmente, no Uruguai, se investiga uma
estratégia de edição gênica por CRISPR/Cas para desenvolver
um gene drive com financiamento de fundos nacionais, o que
garante o controle completo, e instituições locais, autoridades
e produtores podem ser os proprietários da biotecnologia.
Finalmente, o conhecimento gerado abre a possibilidade para
desenvolver localmente novas estratégias biotecnológicas para o
controle de outros parasitas e/ou insetos vetores relevantes na
saúde animal e pública.

Palavras-chave: biotecnologia, CRISPR, impacto económico,
ectoparasita, bicheira.

1. Introduction

Cochliomyia hominivorax (Diptera: Calliphoridae), the New World Screwworm (NWS) fly, ‘moscade la
bichera’ or simply ‘bichera’ as known in Uruguay and the region, is an obligatory ectoparasite that causes
myiasis in warm-blooded vertebrates, including humans(1). Myiasis, as defined by Zumpt(2), is the ‘infestation
of live animals by dipteran larvae that at least during some developmental phase feed on host’s flesh and
fluids’.

e first record of the species was in 1858 by C. Coquerel, a French medical doctor and entomologist who
collected larvae from the frontal sinuses and nostrils of a man held in the Devil’s Island penal of Cayenne,
French Guiana. Originally, he named the species Lucilia hominivorax, denoting its striking characteristic,
as hominivorax is roughly translated as ‘man-eater’. His report in the Annals of the Entomological Society
of France(3) described several human cases with high mortality. Coquerel’s article went unnoticed until the
1930’s decade and for example the NWS fly was confused with Cochliomyia macellaria in the Americas, a
scavenger of carcasses. is misidentification was solved by Cushing and Patton(4), which analysed genitalia
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of the flies and named the parasitic species Cochliomyia americana. Later it was found to be the same species
described by Coquerel 75 years earlier and was finally named Cochliomyia hominivorax(5).

e following review provides an integrative overview of the epidemiological and economic impact of
myiasis, and discusses the NWS fly control in Uruguay and region as the likely solution going through the
history of sterile insect technique (SIT)-based and novel biotechnology-based strategies.

1.1. Life cycle

e NWS life cycle involves a complete metamorphosis (eggs, three larvae instars, pupae and fly). e pupae
and adults make up the free-living phase which is critically influenced by environmental conditions. On the
other hand, eggs and larvae develop under host temperature. Its cycle spans for 24 to 60 days, depending
mostly on the temperature and humidity(1)(4)(6)(7). Adult gravid females lay their eggs on the dried edges of
wounds and bodily orifices of animal hosts. Between 12 to 24 hours later the larvae hatch and begin feeding
from the animal’s flesh and fluids(5)(8). Larvae go through three stages of instar (L1, L2 and L3), for about 4
to 8 days aer which L3 larvae matures and leaves the wound. As it falls it screws into the ground to pupate(5)

(9) and later adults emerge. Time between the falling of the larvae and the emergence of the adult depends
on environmental and climatic conditions. Aer 24 hours of emergence males are sexually mature and are
polygamous, mating 5-6 times during their life(10). On the other hand, NWS fly females are monogamous(11),
able for mating two to five days aer emerging. ey are autogenous (i.e., females can produce eggs without
a first protein meal) at least for the first reproductive cycle, being ready for oviposition at least four days aer
mating(12).

1.2. Geographic distribution, habitat preferences, seasonality and abundance

e NWS fly is a tropical-subtropical species endemic to the Americas, present in almost all biomes since
long time ago. A phylogeographic analysis including NWS samples from South and Central America,
and the Caribbean support the hypothesis of a North to South spread that must had begun during the
Pleistocene, and indicates it must had reached its current geographical range during the Holocene(13). e
NWS demographic history as revealed by mtDNA sequences supports that the human settlement of the
Americas modified its habitat by introducing a novel host that could have enlarged the fly populations, a
process reinforced by livestock introduction 500 years ago(13). e screwworm prefers warm humid climate
and is not homogeneously distributed(14), it is mainly associated with water courses(15) inhabiting the ecotone
between forests and grasslands, and semi-open forests(16)(17)(18)(19). e Pampas biome is dominated by
grasslands and riverine forests, which during the spring-summer season with warmer temperature constitute
an ideal habitat for the NWS fly. In addition, the hillside forests and wetlands complement this favourable
environmental setting. Another factor that could support the NWS fly development in the region is the
landscape modification introduced by the current forestation intensification. Naturally, its abundance
increases due to warm-blooded animal density(14), something extremely high, because of livestock, in the
Pampas biome. ere are also high abundance differences between sites within the same habitat, with a
split among feeding, mating and oviposition sites(18)(20), indicating its sensitivity to micro-environmental
variations. Field observations and artificial habitat reproduction indicate that newly emerged individuals fly
out the forest seeking for food and rest, preferring flowering trees(21)(22). Mark-release-recapture data have
also shown that NWS females have preferences for forests, but they fly in nearby grasslands looking for hosts
to lay eggs(23).
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Historically, the NWS fly was geographically distributed from the southern United States to central
Argentina, including the Caribbean islands(24). e Edwards Plateau in Texas was indicated as its
northernmost limit, but registered up to north Iowa (43° parallel) in the warmer months every year(25)(26).
e southernmost limit was indicated at the 45° parallel, Province of Chubut, Argentina(27). e central
region of Argentina, like Uruguay, is a transitional zone where the NWS fly behaves seasonally, and at
the north of parallel 29° is year-round present(28). Mean winter temperature below 9°C is considered a
threshold determining the NWS fly distribution(10)(25)(29)(30)(31) and emergence of adults is ~1% at -6°C(32).
Its high dispersal ability shapes its distribution in the north hemisphere extending its range northward from
overwintering subtropical areas(32)(33). e main hypothesis is that a small propagule with few individuals
can re-invade ‘marginal’ areas when conditions favor its survival and reproduction return(34)(35).

Many authors evaluated its flight capacity, Barrett(25) indicates that a NWS adult fly can move 56 km in
its life, whereas Mayer and Aztemi(36) estimated a dispersal rate of 3 km/day when conditions are favorable,
and finally Bush and others(37) estimated that most adults fly around 16 km/day, but some outliers flying
290 km were reported. More recently, in an experiment using marked flies conducted between Argentina
and Uruguay in order to test the Uruguay River as a natural barrier to dispersal, individuals were recovered
at 13.9 km and 15 km from the releasing point, respectively(7). Despite its great flight ability and high
reproductive potential, the NWS fly density is relatively low, around 200 flies/km2(37)(38). More recent studies
carried out in a tropical region estimated between 10 to 120 flies/km.and a dispersion that did not exceed
7 km(39), indicating that it is able to double the population in about 100 days(40). However, the relationship
between its abundance and the climate has been difficult to establish; some studies did not find a significant
correlation(41)(42) but others did(43)(44). Parman(32) suggested that drier soils benefit pupae emergence in
winter, while humid soils reduce pupae viability at any time of the year. But omas(45)(46) reported a high
resistance of pupae to drowning, and did not find negative effects of moisture on adult emergence in southern
Mexico. On the opposite side, mortality of mature larvae, pupae and adults has been reported as high due to
desiccation(47)(48). In Argentina and Uruguay, as expected, the mortality of larvae and pupae is higher during
winter(7)(28). In the central region of Argentina, it was shown that adult hatching percentage increases with
temperature (from 47% at 14°C to 97% at 24°C), and flooding generate the death of pupae due to lack of
oxygenation(49). In Uruguay, no adult emergence was registered during the severe winter of 2016, and the first
emergence was registered in spring (aer 33 days of pupation) supporting a seasonal behaviour, but fertile
adults were recovered during the less severe winter of 2017. is emergence rate difference was also evident
between the north and south of the country, revealing the temperature influence on the species occurrence,
emergence and pupal period span(7).

In order to investigate the role of weather in the eradication of the NWS fly, Gutierrez and Ponti(50)

parameterized a physiologically based demographic model using public data on developmental times,
fecundity and mortality rates on temperature to characterize its year-round persistence range. ey showed
a strong influence of winter temperature and rainfall on NWS outbreaks in Texas, USA, from 1962 to
1982, and Libya, from 1988 to 1992, and determined that the optimal temperature to complete the life
cycle is 27.2°C, also determining that the putative lower and upper thermal thresholds are 14.5 and 43.5°C,
respectively.

In summary, warm and humid climates have been associated with NWS fly abundance, and dry climates,
both cold and hot, with low abundance(32)(51)(52)(53)(54)(55). is notion that climate governs NWS fly
abundance is implicit in the seasonal nature of myiasis in domestic animals(51). To our knowledge, no study is
evaluating how the current warming will modify the NWS fly distribution and dynamics, if southern South



P. Fresia, et al. Historical perspective and new avenues to control the myiasis-causing fly Cochli...

PDF generated from XML JATS4R

America will be colonized and/or will cause myiasis above a problematic threshold along the year in seasonally
regions like Uruguay.

1.3. Genetics and population genetics

e NWS fly genetics have been under active investigation, from cytogenetics to molecular and population
genetics unlocking many aspects of its biology, as well as generating molecular tools extremely useful for the
development of new control strategies.

Cytogenetic maps allow physical and genetic maps to be integrated, becoming an invaluable tool for the
genetic analysis and manipulation of any species. e NWS fly has a diploid number of 12 chromosomes (2n
= 12), with five pairs of autosomes and a pair of sex chromosomes (XX for females and XY for males)(56).
Polytene chromosome photomaps of the NWS fly have been described(57)(58), and more recently updated
with a resolution of 1450 bands(59). e genomics era of this pest species began with the mitochondrial
genome sequencing(60) and recently the whole nuclear genome sequence was described(61). A major advantage
of genomics data is the opportunity to deeply address questions relating to taxonomy and systematics,
molecular evolution, population divergence, gene function and adaptation. An example of real time
evolution, extremely relevant for control programs, is insecticide resistance. To investigate this in the
NWS fly a transcriptomic approach has been used to measure metabolic detoxification enzyme families
(i.e., cytochrome P450 monooxygenases, glutathione S-transferases and carboxyl/cholinesterases)(62) and
identified mutations in genes related with organophosphates and pyrethroids insensitivity(63)(64)(65)(66)(67).

Population genetics is essential in fields like evolution, systematics, ecology, conservation and wildlife
management to understand the causes of genetic differences within and among species. In pest management,
population genetics will allow through the inference of divergence and migration rates to quantify the degree
of geographic or ecological isolation among regions, useful information to define the target area and scale of
a control program. e genetic variability and population structure of the NWS fly have been characterized
using cytogenetic markers(66)(68)(69)(70)(71)(72), isozymes(73)(74)(75)(76)(77)(78), RAPDs(79), RFLP, PCR-RFLP and
sequences of mtDNA(13)(80)(81)(82)(83)(84)(85)(86)(87)(88)(89), microsatellites(90)(91)(92), and SNPs(93). ese 40 years
of research support that NWS fly is a single highly polymorphic species.

On the continental-wide scale, the NWS fly is structured into four regional groups of populations:
CG (Cuba), DRG (Dominican Republic), NAG (North Amazon Group: Jamaica, Trinidad and Tobago,
Colombia, Ecuador and Venezuela) and SAG (South Amazon Group: Brazil, Paraguay, Uruguay and
Argentina)(87). Population divergence models and historical demography based on mtDNA sequences
support a population expansion process that has started in the north, with a first split between North/
Central America and South America populations aer the Last Glacial Maximum (15,300-19,000 YBP),
followed by a second split between NAG and SAG in the Amazon region during Pleistocene and Holocene
(9,100-11,000 YBP)(13). Interestingly, NAG and SAG do not share mitochondrial haplotypes indicating a
high degree of isolation between the northern and southern regions of South America(13), despite connection
corridors were predicted in the Atlantic Ocean coast region and through the Northwest Brazil and Peru(94).
is geographic structure has been interpreted as due to a barrier at the north of the Amazon basin,
although not yet described(88). SAG has low population differentiation without geographic structure for
mtDNA(87)(89), probably due to population expansion process(13). Within SAG, populations from Uruguay
were described as a single panmictic population based on mtDNA data(84) or with low divergence based on
nuclear microsatellites(90).

More recently, protocols for specific gene disruption using the Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) technology (CRISPR/
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Cas9)(95) have been successfully developed in the NWS fly(96)(97). is functional genomics approach opens
a new avenue to study gene function in vivo and for the development of biotechnological based strategies
for insect pest control.

2. Parasitology and epidemiology

As described, the NWS life cycle consists of two phases: the parasitic phase, that involves the three larvae
stages which extend for a fairly constant period of time as it develops in the host, and the free living phase,
that involves the mature 3rd instar larvae which screws into the ground to pupate and aer a complete
metamorphosis emerge as adult flies. is last phase can be completed in eight days in optimal environmental
conditions. Aer mating, through sexual reproduction, females lay eggs at wound edges or host orifices
repeating its life cycle.

2.1 Parasitic phase

Although female flies are attracted to wounds of warm-blooded animals to oviposit, they may also do so on
different body openings such as nostrils and vagina(10), taking on average 15 minutes to lay their eggs(10). A
single female can lay around 200 eggs (ranging from 10 to 500) in an average of four oviposition, and as
myiasis odour is attractive to other flies (i.e. facultative opportunistic blowflies), it results in infestations of
hundreds or thousands of larvae, which causes host’s weight decrease, pain, agony and suffering for several
days, and eventually death if not treated(10)(23). e eggs laid by NWS female flies hatch between 12 and
24 hours. e hatching larvae (L1) tend to aggregate on wounds borders(1)and feeding on the host’s flesh
screwing their way into it leaving their spiracles facing the cavity opening in order to breathe(10). ey molt to
second stage larvae (L2) 2 days aer egg eclosion, and during this stage larvae gain some weight reaching 4.9
mg(1). On the third day from infestation larvae molt to their third stage (L3) reaching 16 mg, keep growing
until approximately 120 mg of weight while enlarging the injury they create(1). During the last development
stage, larvae produce an exudate which promotes bacterial infections and prevents the wound from healing.
Aer 8 days from infestation almost all larvae at the third instar have le the wound falling on the ground
to start the non-parasitic phase(1)(10).

Despite the specific requirement of living tissues from warm-blooded animals for its parasitic phase, the
NWS fly is extremely versatile considering the diversity of hosts where it can complete its development. is
wide host range, from wildlife to domestic animals and humans, as well as where it can oviposit, including
all kinds of wounds, even a tick bite, and bodily orifices illustrate its high consequence parasitic ability.

2.2. Free living phase

Once mature, L3 larvae reach the ground, screws into it to pupate, and aer a variable period of days -
depending on environment and mainly on soil conditions- they complete the metamorphosis to the adult
form. It has been described that L3 larvae can screw into depths from 0.5 to 6 cm(7)(9). So far it has been
established that the depth to which L3 larvae can reach to pupate may vary due to soil type(9)(10), ground
vegetal cover(10) and environmental temperature(32). Although high moisture soils favour pupae survival,
flooded grounds diminish it(41). Warm seasons with higher temperatures shorten the pupation span(7)(10),
but persistent extremely high temperatures negatively impact pupae survival(41). erefore, the whole NWS
life cycle is usually complete within 18 days at 29°C or 24 days at 22°C, and although the screwworm lacks
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a dormant overwintering stage (i.e. diapause), it can even extend the pupae phase for more than 50 days
when facing harsh environmental conditions(1)(4)(6). For instance, recent experiments conducted in Uruguay
recovered viable flies aer 57 days of pupation(7).

Flies normally emerge early in the morning, and usually females show up first. Initially, the flies’ cuticle
looks pale and so, and their wings wrinkled and folded. Aer reaching the surface, they do not move for
15-20 minutes, while spreading their wings(98). Some hours later, their exoskeleton hardens and gains a deep
blue to bluish metallic colour, having on their thorax three perceptible black stripes, with the one in the
middle shorter than the ones on the sides(10). Males reach sexual maturity at 24 hours from emergence and are
polygamous(10). Females accept the male between two to five days aer emergence(1)(10)(99), and copulation
generally occurs during daylight period and lasts between 1.6 to 3.8 minutes. e oviposition occurs between
four to six days aer copulation, when NWS females feels strongly attracted to animal’s wounds and start
searching for a host to discharge their eggs(1)(10)(99)(100).

2.3. Livestock

e screwworm was a chronic problem in southern USA(26)(31)(101). Only in Texas, during 1935, there were
3.2 million NWS-related myiasis cases in cattle, of which about 15% of infested animals died(102). Currently,
NWS infestations remain a serious problem for animal health in South America. Costa-Junior and others(103)

reviewed the literature on occurrence of both larvae (myiasis-causing development stage) and adults in Brazil
concluding that NWS fly is the most important cause of primary myiasis in livestock, pets and human beings,
and it is distributed throughout the country. Other epidemiological reports in South America have shown
the prevalence and incidence of the NWS fly, indicating its importance in a tropical area in Ecuador(104), and
have revealed that is widespread in Venezuela representing a serious threat to the livestock industry, as well
as to the human population(55).

In Uruguay, the NWS fly has been reported in the whole territory and it is difficult, if not impossible, to
find a livestock farm without myiasis during spring-summer-autumn. is epidemiological situation makes
the systematic investigation of the NWS fly prevalence necessary, as well as its population dynamics, in order
to fine-tune any control efforts. A survey of the larvae from naturally infested wounds in ruminants (i.e.
sheep and bovines) conducted in Uruguay, from November 1985 to May 1988, showed that nearly 88%
were identified as C. hominivorax, while the remainder were assigned to Chrysomyia albiceps and Cochliomyia
macellaria, both facultative myiasis-causing blowflies. e main injuries were observed in sheep hooves
(~27%) and navels in new-born calves (~7%), and the authors highlighted the high incidence of myiasis
on foot diseases of sheep during the investigation period. Interestingly, three myiasis with only larvae from
secondary species [C. macellaria (n=2), C. albiceps (n=1)] were registered in this survey(105). Another survey
conducted from January to May 1988 in Uruguay, based on a questionnaire to livestock producers, indicated
that myiasis was reported in all the surveyed farms and the prevalence was 4.5% in cattle and 6.2% in sheep(54).
Also, the Official Veterinary Services of Uruguay (DGSG) has made numerous efforts to determine the
impact of NWS. In 2006, a survey was carried out using the 2005 national livestock database (DICOSE) as
the sampling frame(106). A total of 150 from the 49.431 registered Uruguayan farms were selected by simple
random sampling according to each of four strata of production type: sheep (predominantly), mixed (beef
cattle and sheep), beef, and dairy farms. Data was collected through personal interviews with the livestock
owners between July and November 2006. e myiasis estimated prevalence was 3.4% in cattle and 5.7% in
sheep, in close agreement with the previous report, whereas mortality was 0.06% in cattle and 1.25% in sheep.
It is remarkable that livestock owners declared to plan management practices, such as cattle castration and
sheep docking, shearing and births, when the presence of the NWS fly is low. More recently, from August
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to November 2014, DGSG performed a new survey using DICOSE 2013 to select 650 from the 45.059
total farms by a stratified random sampling of three strat[1]. Again, data was collected through personal
interviews and showed that 76.6% of livestock owners plan the management practices trying to avoid the
NWS fly season. e myiasis estimated prevalence was 3.7% in cattle and 8.4% in sheep, whereas mortality
was 0.1% in cattle and 2.5% in sheep. e three surveys agree to indicate a pronounced seasonal variation for
NWS presence, being at its minimum during winter and at its maximum in the summer, as expected. Despite
the methodological differences in each survey, a trend in the prevalence for sheep and cattle is observed at
national level.

e myiasis occurrence was also investigated at a narrowed scale in the Department of Artigas (North
of Uruguay, 30 °S), between August 2014 and April 2015(107). In this survey a total of 164 livestock farms
(9%), occupying 184,826 hectares (16%), with 339,227 livestock (132,877 cattle and 206,350 sheep, being
16% and 19%, respectively) were analysed. Sheep (69%) and cattle (30%) were the most affected, whereas,
horses (0.5%) and pigs (0.5%) were barely affected. Within sheep, adult females (39%), and within cattle,
calves (69%) were the most affected. Hooves’ myiasis were the most frequent in sheep, and calves’ navel
myiasis were the most frequent in cattle. Interestingly, in this survey myiasis cases were registered during
winter in the northernmost Uruguayan region. Based on livestock farms distribution, it was possible to
hypothesize a link between myiasis occurrence and the landscape. Myiasis cases were higher when animals
graze in riverine fields, near natural forest. Also, it was possible to establish a connection between livestock
management activities, such as cattle identification with earrings, brand fire, castration, dehorning, shearing,
sheep marking, etc., and the occurrence of myiasis. e traditional sheep shearing and cattle castration are
the most important activities associated with myiasis occurrence.

In order to reliably determine the occurrence and local scale distribution of NWS myiasis during winter, a
larvae sampling was performed from June 21 to September 19, 2015(107). Nine livestock farms were selected
in Artigas, each with a veterinarian responsible for larvae collection and cases reported. Larvae identification
was done by morphological characters (bands of spines, spikes of spines, segments without spines, posterior
spiracles, and tracheal trunks) following a key(10). A total of 103 myiasis were recorded, from which 101
(98%) identified larvae were C. hominivorax, and 2 (2%) were C. albiceps. Almost 80% of myiasis were
registered in three farms, one in the locality of Sepultura in a spiny savanna and shrubland with natural forest.
Myiasis cases were recorded in 11 of the 13 weeks covered, with higher occurrences at weeks 2 and 10, and no
cases only during weeks 7 and 13. Sheep were the most affected (88%) and all identified larvae were NWS,
while remaining cases were in cattle. In this study, the authors reported that 66% of sheep myiasis were due to
lambs’ tail docking, 21% in hooves possibly initiated in wounds generated by foot rot, 9% in vagina probably
caused by injuries from lambing, and the remaining 4% were in navels, heads and necks. Cattle myiasis were
mostly in brand wounds (33%) but only half of those were caused by NWS. Screwworm-related myiasis
were uniformly distributed in brand, navel, vagina, ear, scrotum and other body wounds related to usual field
management activities (i.e., fire branding, lambing and castration, etc.).

2.4. Wildlife

e NWS fly also affects wildlife warm-blooded vertebrates, but its incidence and impact are poorly
documented. It has been indicated that prior eradication in the USA, around 2-3% of wild animals could
be infested in endemic regions(108). Well documented examples are the die-offs associated with myiasis of
the white-tailed deer (Odocoileus virginianus texanus) in parts of the USA with fawns deaths ranging from
25% to up 80% depending on year conditions(109)(110)(111), and myiasis reported in feral swine (Sus scrofa)
in Florida (USA) in the 1950s, where the control of swine populations was considered a priority to reduce
the NWS fly incidence in deer herds(112). More recently, the importance of wildlife as NWS fly host was
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highlighted during Florida Keys (USA) outbreak in 2016, which resulted in the death of 135 endangered Key
deer (Odocoileus virginianus clavium)(113). In 2021, a total of 27 NWS myiasis in feral swine were reported
in the north of Uruguay(114). erefore, myiasis surveillance in wildlife could enhance the efficiency of area-
wide NWS fly management programs(115).

2.5. Human cases

Myiasis in humans is neglected(116) and under-reported, mainly due to negative social implications. Every
human is a potential host, but those who cannot take care of themselves are especially vulnerable, like
children, elders and mentally challenged persons. People living in NWS favorable areas, like the rural
population of South America, are at a higher risk. In Uruguay it is not a notifiable disease and mostly
outpatient treatments, so its real incidence is not known with exactitude. DGSG in its 2006 survey reported
that 0.7% of the rural population is affected by NWS annually, corresponding to 818 human cases per year.
But also other authors(117)(118)(119) have been reporting human cases in urban areas, affecting children and
adults. Myiasis were predominantly in the scalp and oropharyngeal region, and all cases were associated
with pre-existing injuries and concomitant conditions, such as mental disorders, poor hygiene or alcoholism,
among others. A recent study described the clinical and epidemiological characteristics of 63 myiasis cases
in children (7 years old in average) hospitalized in a referral center in Uruguay between 2010 and 2019. It
was shown that the vast majority of myiasis (98%) were caused by the NWS fly and one third of the patients
presented comorbidities, with chronic malnutrition being the most frequent. About half of the cases were
initiated in injuries caused by pediculosis(120).

3. Economic impact

Several evaluations of the economic losses caused by the NWS fly have been conducted in Central and North
American countries, and in Libya, where the favorable result of cost-benefit analysis (CBA) encouraged the
implementation of eradication programs(10)(121)(122)(123)(124). Many of these studies implemented surveys of
farmers that made it possible to approximate the costs of the NWS fly per head of cattle. ese studies
could estimate the NWS fly impact on total production costs and the level of production per farmer
by extrapolating the average per head cost to the entire herd. As stated by Wyss(122), the annual benefits
of NWS eradication for the American, Mexican and Central American farmers were estimated in 1999
at USD 870, 319 and 85.1 million respectively (USD 1,350, 495 and 132 million in 2020, adjusted for
inflation). All affected countries reported that the most important direct losses are in manpower -rural
working hours dedicated to myiasis control (and diverted from other productive activities)-, followed by
animal deaths (mainly sheep), productivity decrease, medicines and veterinary supplies costs. Based on the
previous estimates done by Wyss(122) and Vargas-Terán and others(123), the Mercosur farmers could save
between USD 4,200 million and USD 4,760 million each year (values adjusted by inflation to 2020).

In Uruguay the livestock industry is a key sector representing more than 20% of goods exports, 17% of
total employment and covering more than 70% of the country’s agricultural area(125)(126). Quantification
of NWS economic losses in Uruguay is a difficult task that has been approached through several studies
(Figure 1), despite great intra- and interannual variability depending on climate conditions. Direct losses for
livestock producers ranged from USD 40 million to 154 million annually adjusted to 2020 (i.e. between 2%
and 8% of livestock gross domestic product, GDP). In a first attempt, the DGSG estimated in 1998 annual
losses of USD 25 million (USD 40 million in 2020), distributed in: rural work (60%), veterinary supplies
(8%), sheep (20%) and cattle (12%) mortality(127). Later, set up on the second DGSG survey carried out in
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2006, the direct economic losses were evaluated at USD 38.5 million yearly (USD 50 million in 2020)(106).
With a similar methodology, based on prevalence and mortality data due to NWS myiasis recorded in the
2014 DGSG survey, annual losses of USD 42 million were estimated (USD 47 million in 2020), material
gathered from an unpublished dra by Grupo de Trabajo Ejecutivo (INIA, SUL, MGAP) (private collection;
unreferenced). Furthermore, the benefit of the NWS fly eradication for Uruguayan livestock farmers, based
on a model from Texas A&M University, was estimated at USD 99 million in 2000 (USD 154 million in
2020 adjusted for inflation)(128). is model included costs reduction due to eradication (i.e., insecticides,
drugs and veterinary care, inspection and surveillance, labor, animal mortality, among others), as well as
increases in production (i.e., animal weight, meat, milk, among others). Considering the entire economy,
annual losses could increase up to between USD 278 million and USD 1,233 million in 2020 dollars per year
(USD 210 million in 2005, according to Wyss estimates cited in FAO/IAEA 2018, and USD 794 million
in 2000, based on the Texas A&M University model).

FIGURE 1
Annual losses discriminated by category due to myiasis caused by the New
World Screwworm fly NWS Cochliomyia hominivorax e gray bar year

2000 shows the expected global benefit of the NWS eradication in Uruguay

In the most recent CBA carried out in Uruguay, Köbrich Grüebler(129) and Baraldo(130) estimated losses
in the same range as the previous DGSG surveys. e first one estimated an annual cost of the NWS myiasis
of USD 52.2 million, although the calculation includes cattle and sheep of a border area, up to 25 km from
the frontiers with Argentina and Brazil, which would also benefit from an eradication program in Uruguay.
Adjusting for this border area, the myiasis cost for Uruguayan livestock farmers was estimated at USD
43.1 million(99). A detailed static simulation model on disease prevention, surveillance and treatment was
developed to estimate the impacts of the NWS fly and to evaluate the benefits of an eradication program.
It is important to note that, although the parameters are mostly based on assumptions and estimates from
qualified informants, it appears robust according to expert criteria. Like in the previous studies, the main cost
identified was rural working time spent on surveillance and diagnosis of myiasis activities. However, only
12.5% of the working day (1 hour/person/day) was imputed to NWS surveillance, according to experts. e
study considered that surveillance time varies with farm size, for which farms were classified into small (less
than 50 ha of surface), medium (50 to less than 200 ha) and large (200 or more ha). According to this, 1.72
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million of working days (USD 22.3 millions) are dedicated to activities of infested animals’ treatment, search
and separation of animals with wounds that could lead to NWS myiasis, which is equivalent to 0.096 working
days per head of cattle. is estimate is lower, and therefore more conservative, than that by Hernández
and Piaggio(131), who calculated 0.158 days/year for surveillance per head of sheep or cattle. Also, the time
in minutes for each preventive and curative treatment activity was considered as parameter in the model,
in addition to the cost of veterinary supplies (USD 12.7 millions). Additionally, animal deaths and loss of
leather value were considered (USD 17,2 million). Based on Köbrich’s work, Baraldo estimated the annual
cost of the NWS myiasis in Uruguay at USD 40.9 million, and developed a CBA model for the eradication
program proposed.

Indirect losses are also generated in Uruguay, as shown by 2006 and 2014 DGSG surveys: the adoption of
inefficient herd management practices in order to avoid the highest incidence season of myiasis, as well as a
loss of animal welfare. Additionally, NWS represents a risk to exports, because of food safety and live animal
trade issues. As mentioned before, Uruguay was indicated as the source of the NWS fly introduced in Libya
some decades ago(132) and some commercial restrictions with this country remain impose.

4. Control strategies

Chemical insecticides are still the main strategy to control livestock ectoparasites worldwide, and the NWS
fly is not an exception. Usually, disease management strategies based on chemical insecticides are farm-based
relying on personal efforts and empirical knowledge about local resistance of the parasite under treatment
to select the most suitable commercial product, which have different success rates. e indiscriminate usage
of few compounds, mostly organophosphates and pyrethroids, has led to an increase of resistant individuals
in natural populations, which in turn decreases these compounds efficacy, and thus making the control
increasingly challenging(133)(134)(135). Because of the reactive nature of this approach, as it is applied once
the disease has been detected, this strategy will hardly reduce target pest populations. Alternatively, Area-
Wide Integrated Pest Management (AW-IPM) is a systematic proactive approach that can integrate control
strategies as the Sterile Insect Technique (SIT) or newly emerging biotechnological tools.

4.1. Insecticide usage

Mutations in target sites altering enzyme sensitivity to a chemical compound are the predominant molecular
mechanisms of insecticide resistance, but also the metabolic detoxification pathways play a role in processing
the insecticide. Independently or combined, these mechanisms confer resistance to all insecticide classes
available(136).

Organophosphate insecticides (OP), diethyl-OPs and dimethyl-OPs have been widely used to control
infestations caused by NWS larvae. Non-synonym mutations (i.e., mutation that alters the amino acid
sequence of a protein) in the NWS fly carboxylesterase E3 gene (also known as ChαE7) enable the hydrolysis
of organophosphate substrates(62)(137). It has been found that the substitution of a glycine for aspartate at
position 137 (G137D) in the E3 enzyme of Diptera species confers broad spectrum resistance to OPs, mainly
diethyl-OPs(138). As well as the replacement of a tryptophan by leucine/serine at position 251 (W251L or
W251S) has been associated with low resistance level to diethyl-OPs and high resistance level to dimethyl-
OPs and may be related to cross-resistance to pyrethroid insecticides(139). ese mutations were detected
in a wide region of Brazil and Uruguay, in a high occurrence in several locations(65)(89), although whether
resistant individuals due to the phenotypic expression of such mutations are circulating in this region has
not been investigated.
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Currently, in Uruguay, DILAVE-MGAP has approved 60 topical insecticides based on four kinds of
active principles: phenylpyrazole (Fipronil), pyrethroid (Cypermethrin), organophosphate (Dichlorvos,
Diazinon), and neonicotinoids (Imidacloprid) to control NWS larvae. ese insecticides reached the
MERCOSUR (N76/96) standard where a 100% efficacy must be proved, and the standard WAAVP(140),
where a 100% therapeutic efficacy and 90% persistent efficacy must be proved. Systemic insecticides of the
macrocyclic lactones (Ivermectin and Doramectin) did not demonstrate therapeutic or prophylactic activity
against NWS larvae, and are still under investigation.

A survey done in Artigas, Uruguay, revealed that most farmers (91%) use commercial insecticides, while
a small fraction (9%) use both commercial and homemade insecticides (usually a mix of some kind of oil
with a repellent). is questionnaire also pointed to a decrease in product effectiveness and 15% of the
participants stopped using certain products. In general, farmers based on their empirical knowledge suspect
that treatment with spray and powder fails (~55-60% curative fails) more than liquid (~70% curative
success) and ointment (~70% curative success) insecticides(141).

4.2. History of SIT-based control programs

e idea of reducing wild populations of a pest or parasite species by releasing sterile insects (i.e., the
sterile insect technique, or SIT) and thus controlling them was independently conceived by Alexander S.
Serebrovskii in Russia, Federic L. Vanderplank in Tanganyika (now Tanzania), and Edward F. Knipling
in the USA during the 1930s and 1940s(142). Knipling observed the extreme sexual aggressiveness of the
NWS fly males, and that females refuse to mate more than once, realizing that if sexual sterility could be
induced in males, and if a vast number of them could be sterilized and released in the field, then NWS
natural populations would be eventually suppressed(142)(143). e SIT is a genetic control approach based
on the Mendelian inheritance of sterility produced by dominant lethal mutations generated by ionizing
radiation(144), that imposes birth control to further reduce the target pest populations(145). Its application
requires mass rearing of large numbers of the target insect under laboratory-controlled conditions, exposing
them to ionizing radiation to induce sexual sterility, and releasing them successively into target wild
populations on an area-wide basis. e NWS fly was the first insect parasite to be reared on an artificial diet
enabling very large insect numbers for its study(146). e SIT is usually integrated as a component of Area-
Wide Integrated Pest Management (AW-IPM) programs(145)(147) where the density of the target populations
is initially reduced, eliminating already mated females with auxiliary methods such as insecticides(148).
Four kinds of AW-IPM integrating SIT can be deployed: suppression, eradication, containment and
prevention(149). A suppression program aims to maintain pest/parasite populations below an agreed and
acceptable economic injury level and/or prevalence level. Eradication implies the elimination of a species
from an area, usually an isolated local population. Nevertheless, the term eradication is restricted to the global
extinction of a species. Containment is defined as the measures in and around an infested area to prevent
spread of a pest/parasite, usually adopted to avoid the spread of alien species, or to consolidate progress made
in an ongoing eradication program (e.g., current NWS fly program in Panama). e prevention strategy are
the measures in and/or around a pest/parasite free area to avoid its introduction.

e NWS fly eradication from North and Central America is one of the most successful programs
worldwide. Started in 1957 to rid the south-eastern USA and extended during the following ~40 years to
eradicate it from the USA, Mexico, and Central America up to Panama(24)(150)(151). By 1984 the goal of
eradicating it to Mexico’s Isthmus of Tehuantepec was achieved(152). At the request of livestock producers
in southern Mexico and Central America, in 1986 the eradication campaign was extended to the Yucatán
Peninsula and bordering countries(153). Eradication was declared by steps as follows: Mexico 1991, Belize and



P. Fresia, et al. Historical perspective and new avenues to control the myiasis-causing fly Cochli...

PDF generated from XML JATS4R

Guatemala 1994, El Salvador and Honduras 1996, Nicaragua and Costa Rica 1999, and finally Panama 2006,
where since 2004 a permanent barrier is maintained in the Darien region -along the Panama-Colombian
border- to avoid reinfestation of endemic NWS from South America(122)(151)(154)(155)(156). During these
campaigns it has been shown that winter temperatures and rainfalls have a great negative impact on the
appearance of NWS outbreaks and could be of great help to succeed in the eradication(50)(157). Also, the
typical low population density of C. hominivorax in the tropics was a key factor for the eradication(157).

Although the APHIS (e Animal and Plant Health Inspection Service, USA) official recognition
was in 2006, it was in June 2021 that the OIE (World Organization for Animal Health) published
Panama’s January 2020 self-declaration of NWS-causing myiasis freedom. In Panama, the Panama-United
States Commission for the Eradication and Prevention of Screwworm, or COPEG (https://copeg.org/),
constructed a smaller insect mass rearing facility in the early 2000s at Pacora, and the larger facility at Tuxtla
Gutiérrez was closed in 2012(142). e Panama facility was inaugurated in July 2006 and aer three years of
installation of equipment, biological safety measures, and staff training in rearing and insect sterilization the
biosecurity facility mass production of flies began in March 2009. Currently, COPEG is the only existing
NWS fly production facility in operation. With a maximum production capacity of 100 million sterile insects
per week, it is currently producing and releasing 20 million sterile flies per week to provide biosecurity for the
Plant and maintain the Permanent Biological Prevention Barrier. (Error 3: El enlace externo www.copeg.org
debe ser una URL) (Error 4: La URL www.copeg.org no esta bien escrita)

An event that deserves to be highlighted was the above-mentioned accidental introduction of the NWS fly
during the late 80’s in Libya, from where the screwworm was eradicated using SIT in 1992(158). Although the
NWS outbreak source remains unknown, it was initially suggested that it could have entered in a shipment of
236,000 live sheep from Uruguay in 1988. Uruguay as the NWS source of the Libya outbreak was discarded
since the shipment arrived aer the NWS cases had been already reported(132). Despite this, the government
of Libya banned the importation of live animals from Latin America, and until this date it was never re-
established with Uruguay, despite the country being actively trading with other Arabian countries.

Currently, there is no official control program for the NWS fly in Uruguay or other country in
South America. e strategies to reduce myiasis’ destructive effects rely on farm owner’s decisions, both
chemical treatment and animal management (i.e., dehorning, castration, caravanning, calving, branding).
Also, on zoos and parks responsible authorities, as well as veterinarians and medical doctors from private
clinics and hospitals. e implementation of an AW- IPM based on SIT for the NWS fly in Uruguay
has been largely discussed and is under evaluation. Some actions have been taken in order to evaluate
the SIT usage in this region, and during 2007-2009 the governments of Brazil, Paraguay and Uruguay,
supported by IDB (International Development Bank) and COMEXA (Mexico-American Commission for
the Eradication of the Screwworm), carried out a demonstration on the Brazil-Uruguay border. is pilot
program was conceived and undertaken to establish the basis for future programmes in the MERCOSUR
countries(127)(159)(160), and encompassed two phases: Phase 1) preparation, human resource training, and
society communication; Phase 2) pilot dispersion of sterile flies. e main purpose was not the parasite
eradication, but technology transfer and SIT field test on the region.

e first action of this pilot program was a mating compatibility study among the factory J06-strain,
originally from Jamaica, and wild populations from Uruguay. en, the field work was executed between
January 23 and May 15, 2009, spanning 17 weeks, in an area covering 100x60km (100x30km in each
country) with centroid in the cities of Artigas (30°24’24.54” S, 56°28’39.34” O, Uruguay) and Quaraí
(30°23’33.13” S, 56°27’13.40” O, Brazil). Pre-dispersion happened the first two weeks, dispersion during the
next 13 weeks, and post-dispersion the last two weeks. Sterile flies were sent from Tuxtla Gutierrez, State
of Chiapas, Mexico, by COMEXA, and quality controls were done when they arrived at Artigas Airport in
order to evaluate that delivery did not affect the sterile pupae.

https://copeg.org/
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For NWS fly monitoring, egg masses were collected in wounded animals, in addition to 10 gummed paper
traps with Swormlure-4 (i.e., lure used in traps that release a strong odor to attract screwworm flies, a chemical
mix including dimethyl disulfide, benzoic acid, indole, and phenol) as bait were distributed throughout the
area and sentinel sheep were placed in 10 farms (five in each country). Differences in egg mass quantity
between both countries were interpreted as due to a higher NWS fly population in Uruguay, which would
occur as a function of the higher livestock density, mainly sheep, that doubled the Brazilian sheep stock in
the region.

e sterility per week, measured as the proportion of sterile/fertile egg masses in sentinel animals, reached
in the pilot area was directly related to the native NWS fly population and its oviposition rate, ranging
from 1.53% in the second week of dispersion to 25.45% in week 11. When analysing the data within each
country separately, the maximum sterility was in Brazil, with 40.7% in week 11. e demonstrative test was
considered a success(127) and the outcomes were promising, especially when considering that sterile flies were
released during summer in the highest density peak of wild flies.

Aer this pilot project to demonstrate the SIT effectiveness in the Uruguay-Brazilian border, sterile
flies were used to investigate natural barriers to NWS fly between Argentina and Uruguay in 2018(7). In
collaboration with SENASA (Servicio Nacional de Salud y Calidad Agroalimentaria), Argentina, and the
advice from USDA-ARS and USDA-APHIS scientists, and assistance from COPEG technicians, the role of
the Uruguay River as a potential barrier for NWS fly crossing was evaluated. NWS sterile pupae shipped from
COPEG, Panama, were marked with distinctive colors and released on both sides of the river in the region of
Fray Bentos (releasing point: 32°53’23.57” S, 57°59’33.83” W, Uruguay) and Puerto Unzué (release point:
32°55’36.41” S, 58°14’23.60” W, Argentina). No marked flies crossing the Uruguay River were captured in
three traps disposed in each country, at 4.3 km, 12.9 km and 15 km away from the release point in Uruguay,
and at 6.2 km, 5.2 km and 13.9 km away from the release point in Argentina. e authors hypothesized
that rivers can serve as barriers and riparian habitats along rivers can serve as corridors for the movement
and dispersal of flies(7). But it is necessary to take into account that the recapture percentages of stained flies
were low, as previously found in Panama(156): 0.08% (8/10,000) of 1st, 0.05% (5/10,000) of 2nd and 0.07%
(7/10,000) of 3rd dispersions in Uruguay, and 0.07% (7/10,000) of 1st, 0.03% (3/10,000) of 2nd and 0.02%
(2/10,000) of 3rd dispersion in Argentina.

4.3. Biotechnology applied to NWS control

4.3.1. Transgenesis

ere is an increasing need for improving the efficiency of the NWS fly eradication and prevention programs.
e most common strategy based on insecticides tends to be inefficient to control insect populations at
low density(161) or where their application is made difficult by the landscape, favoring the reemergence
of populations. In contrast, SIT is more efficient in low-density populations because they explore sites
inaccessible to insecticides. But the current SIT releases both sterile males and females, even though male-
only releases may be 3-5 times more effective at reducing local populations than bisexual sterile releases, since
sterile males do not get distracted by county-released sterile females(162).

Development of male-only strains for SIT programs was approached by transgenesis in two separate
studies. e first consisted of a conditional female lethal transgenic strain of NWS based on the
overexpression of the tetracycline-repressible transactivator (tTA) in females(163), causing lethality, possibly
due to ‘transcriptional squelching’ or interference with the ubiquitin-dependent proteolysis. Binding of
tTA to the tetracycline operator (tetO) was strongly inhibited by the addition of tetracycline to the diet,
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providing a switch-off system. Only females expressed a functional tTA protein. Some of the homozygous
strains produced exhibited suitable mass rearing and fitness characteristics. However, females were removed
at the third instar larvae/pupae stage aer they had consumed the larval diet. Additional saving in production
costs might be obtained with a sexing strain that removes females from the mass rearing before they start
feeding. erefore, the next step was to develop a strain where females die early in development(164) in a two-
component genetic system: a) a Driver, containing an early promoter of an embryonic cellularization gene
regulating tTA expression; and b) an Effector, containing a tTA-regulated pro-apoptotic gene. Transgenic
strains were created carrying one of the two constructs and then homozygous lines for Driver and Effector
are crossed to each other. Homozygous strains reared in a diet lacking tetracycline will develop males while
those reared in a diet containing tetracycline will develop both sexes. All strains produced only males on a
restrictive tetracycline feeding regimen. e females died at embryo or first instar larval stages. Evaluation of
fitness characteristics, important for mass rearing, showed that one of the two-component strains and the
all-in-one strain were particularly promising candidates to use in NWS control programs.

Despite the successful development of these female lethal systems, the strains generated yet need to be
field tested before releasing in the wild. Also, there is a potential for development of resistance to lethal
transgenes, for example, some commonly occurring genetic variation in fruit fly, Drosophila melanogaster,
has been shown to provide almost complete protection from lethality induced by the tTA over expression
system(165).

4.3.2. CRISPR/Cas-based technology

e advance of genetic engineering brings the possibility of more complex genetic approaches for insect pest
control. In this regard, the incorporation of CRISPR/Cas9-based systems(95) could significantly improve
the existing toolkit of NWS molecular methods. Briefly, Cas9 is an endonuclease that produces a targeted
double-strand break in a DNA sequence guided by a single-stranded RNA complementary to the DNA
target sequence (Figure 2a). e generated double strand break can be repaired by two types of mechanisms:
the non-homologous end joining pathway (NHEJ), in which case the process commonly results in the
introduction of deletions and/or insertions (collectively called indels) at the break site. Or, if supplied
with a repair template, with a sequence complementarity to either side of the damaged region, homologous
recombination (HDR) can occur to repair the break incorporating the template (Figure 2b).

Paulo and others(96) established the first protocol to generate site-specific modifications in the NWS fly
genome using the CRISPR/Cas9 system, targeting and disrupting the transformer gene (Chtra), producing
intersexual female flies that show different levels of masculinization in their genitalia, while male adults show
normal phenotype. As an important sex determination gene, required for normal female development, Chtra
could be an interesting potential target for genetic control systems. In addition, the recently published whole-
genome assembly of the NWS fly(61) could allow the identification of other potential target genes that could
be used in future genetic control programs based on CRISPR/Cas9.

e CRISPR/Cas9-based gene-editing system can be implemented in NWS management control for
improving transgenic sexing strains designed for use in potential SIT programs. e use of this new
technology avoids the concerns regarding the transgene being inserted in a random unpredictable place of
the genome.

Additionally, the CRISPR/Cas9 technology can be used to design a gene drive system. Gene drives are
naturally occurring selfish genetic elements that can increase the odds that they will be inherited (Figure
2c). Many researchers have suggested that these elements might serve as the basis for ‘synthetic gene drives’
capable of spreading engineered traits through wild populations(166). Austin Burt(167) was the first to propose
gene drives based on site-specific ‘homing’ endonuclease. To build a CRISPR/Cas9 based gene drive, both
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Cas9 and the RNA guide must be inserted as a genetic construct in place of a sequence it can cut. If it can cut
this sequence in organisms with one modified and one natural locus, reliably inducing the cell to copy the
construct, and avoid being too costly to the organism, it will spread through susceptible wide populations.
e drive can spread this genetic construct or disrupt existing genes(166).

FIGURE 2
Main outcomes of genomeediting by CRISPRCas9 A Targetspecific single guide RNA sgRNA in
green form a complex with the endonuclease CRISPRassociated protein 9 Cas9 in gray and upon

recognition of a DNA sequence complementary to the sgRNA just before a 5’end recognition
PAM sequence NGG where N is any nucleotide the Cas9 promotes doublestrand breaks DSB

in doublestranded DNA dsDNA 34 nt 5’ of the PAM B DSBs repair pathways triggered by
genespecific nuclease In 1 a mutation is generated a gene is inactivated Quasirandom mutation at
the target site indistinguishable from the natural mutation no DNA fragments are le in the final
product In 2 a targeted nucleotide change edits a gene using a small DNA template sequence In
3 a DNA fragment is inserted e transferred fragment can be recognized and additional DNA

fragments remain in the final products C Genealogies comparing the spread of genetic changes or
mutations as expected by the Mendelian lemost and gene drive rightmost inheritance mechanisms
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For NWS population control, one promising strategy is to implement a population suppression gene drive
that could reduce the size of the target population by disrupting genes causing infertility or lethality only
when both copies are lost(168)(169). Whether a standard gene drive will spread through a target population
depends on molecular factors such as homing efficiency, fitness cost, and evolutionary stability, but it is also
sensitive to specific ecological variables such as mating dynamics, generation time, and other characteristics
of the population(170).

Because any consequences of releasing gene drives into the environment would be shared by the local if not
global community, research involving gene drives capable of spreading through wild-type populations should
occur only aer a careful and fully transparent review process. is should include independent scientific
assessments of probable impacts and fully inclusive public discussions(171). Possible ecological effects can
be assessed by performing contained field trials with organisms that have been engineered to contain the
desired change but do not possess a functional drive to spread it. Finally, the prevalence of the gene drive in
the environment could in principle be monitored by targeted amplification or metagenomic sequencing of
environmental samples.

5. Environmental impact of control programs

Environmental protection aims to avoid and/or repair ecosystem damage by focusing on relevant adverse
effects on biotic or abiotic resources, which has an impact on conservation and would affect ecosystem
components or its sustainable use. In this context, it is also important to consider the magnitude of the
adverse effects caused by the NWS fly, and the regulatory decisions should take into account the ecological
consequences of the application/non-application of control measures when trying to mitigate the damage
caused by this pest insect.

Invasive and parasitic species can cause significant damage to the environment, agriculture and human
health, and there are oen few tools available to control their populations(172). e eradication or population
suppression of the NWS fly, as well as the control program per se, could have an impact on the ecological
landscape, and whether the control actions are acceptable depends on the balance between environmental
and health damage caused by this ectoparasite versus unintended off-target effects(172). e characteristics of
selected control strategy and its management determine the information required to identify and evaluate the
effects on the environment. In SIT-based eradication, the analysis focuses on possible environmental negative
effects due the NWS fly elimination and specific activities of the control program. For biotechnology-based
techniques (e.g., transgenics and CRISPR) it is necessary to evaluate the possible environmental negative
effects of the genetic modification itself, in addition to the likely impacts of the species eradication. Decision
making is supported by risk analysis, which includes a comparative problem formulation approach to define
the risk hypothesis that will determine whether the control plan being evaluated may harm people or the
environment(172). Based on environmental protection goals, characteristics of the control plan that may cause
adverse effects are identified. For each possible negative impact, its probability of occurrence and possible
consequences are estimated based on literature review; NWS fly biology and ecology, and results of NWS
eradication programs carried out in other countries. e objective of the risk analysis is to manage the
tension between a desire for caution regarding the risk of intervention and the worry about the risks of non-
intervention(173).
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5.1. Environmental impact of NWS fly eradication

In order to assess the possible impacts of NWS fly eradication, the Ministry of Agriculture of Uruguay
(MGAP) through a consultancy is evaluating the potential, both negative and positive, environmental and
social impacts of the NWS fly eradication. A preliminary analysis indicated that the NWS fly eradication in
Uruguay would not have significant negative impacts and these would not exceed social and environmental
benefits. Likewise, to reduce uncertainties, it was confirmed the usefulness of gathering information at the
national level of the NWS fly population size, distribution and dynamics, through the fly monitoring, as
well as generating national information on the distribution and population dynamics of species through
monitoring for possible ecological impacts at agricultural landscapes and natural fields, before, during and
aer the execution of the control program. is kind of information will make it possible to evaluate different
negative and positive potential socio-environmental impacts.

Potential impacts associated with ecological interactions include the likely population growth of NWS fly
wildlife hosts, as well as the reduction of stress caused by myiasis in domestic and wild hosts if this ectoparasite
is eradicated. e potential effect of the NWS fly as a regulator of wildlife can be evaluated as positive
in the case that native warm-blooded animals are beneficiated, but negative when alien species considered
pests are the beneficiaries. Special attention called the effect on feral swine(114), and a preliminary analysis
estimates a low risk since its population density depends on other more determining factors than the NWS
fly. e animal stress reduction propitiated by the elimination of myiasis must be considered as positive,
independently if the species is native or alien, under the current animal welfare standards.

e interaction network with other species could also be affected once the NWS fly is removed and the
ecological dynamics of its predators, pathogens, commensals and/or mutualists can be negatively influenced
as well as competitors can be positively influenced. No significant risk is expected for known NWS fly
predators (e.g., ant, beetles, spider) given the low probability of exclusive dependence on it as a food
source, since they are generalist species(174)(175). Similar to what must happen with the NWS fly commensal,
mutualist and pathogenic species. For competing species, there are no records at the national level of species
that could occupy the NWS niche, so the risk could be characterized as non-existent. e absence of tight
specific ecological interactions, leading to a dependency relationship with the NWS fly, is supported by its
seasonal population dynamics and the geographical localization of our country in the species distribution
border, that may not represent an optimal area. Despite this, the absence of ecological interactions with
specialist species hypothesis should be evaluated with data collected during a species monitoring planned
within the eradication program under discussion by the authorities.

Another biotic environmental factor that must also be contemplated is its role as pollinator in the long-
time(176). However, interactions with flowering plants in the role of adults as exclusive pollinators have
not been identified. In summary, a preliminary risk analysis of the environmental impact of an NWS fly
eradication program in Uruguay indicates that it would not result in significant alterations on ecosystems and
ecological interactions. e NWS fly eradication programs have been implemented in wide areas (from USA
to Panama) since the 1950s with no significant negative environmental impacts reported on the specialized
literature. Although, as far as we know, no specific monitoring studies have been conducted, 70 years without
reports of negative ecological impacts have contributed as an indirect proof with the implementation of
control programs.

5.2. Environmental impact of the control program for the NWS fly eradication

Control strategies may involve certain activities that require to be analysed in order to determine whether
they could have a negative impact on the environment. In the case of SIT-based eradication, insecticides
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usage during the first phase of the program and dispersion of many sterile flies were considered. Regarding the
use of insecticides, that could cause potential contamination of soils and waters, on side with the mortality of
non-target animals (i.e., pollinators), the potential impact is limited to the first phase of the program, because
of the increasing use of topical and/or systemic insecticides for prophylaxis and myiasis treatment, as the
needed way to reduce wild populations density before sterile flies’ dispersion. In a long-term, the increased
usage of insecticides during this first phase will not be higher than what has been currently applied, and once
Uruguay is declared free of the NWS fly its usage will decrease drastically, being necessary only to control
some sporadic myiasis and suspicious cases.

During dispersal and maintenance phases the effect on air traffic due to the dispersion of millions of sterile
flies could negatively affect other species, such as avifauna, because of the disturbances caused by aircras
and the novel traffic pathways. However, its impact could be considered non-significant since the traffic bulk
would be also concentrated in the first phases of the program.

Recently, genetically modified or preferentially inherited (GD, for gene drive) organisms have been
proposed as a new tool that could be used to control or eradicate parasite or vector species. Gene drive systems
(see subheading 5.3.2 and Figure 2c) allow the introduction of genetic elements at a higher frequency than
expected, which can rapidly change genotypes in target populations with consequences on species fitness.
For example, the control of the dengue vector Aedes aegypti by releasing genetically modified sterile males,
described in Araújo and others(161), in Grand Cayman (2009 and 2010), Malaysia in 2010 and Brazil in 2011,
with an efficiency greater than 80% population suppression, can be approached by a GD system.

e environmental risk assessment of interventions based on novel biotechnological tools, like
transgenesis and gene editing, requires having genetic and technical information about the specific strategy
used to generate the organism as well as information about target and non-target species. Ecological and
evolutionary data would be required such as hybridization or horizontal gene transfer between target
and non-target species, the evaluation of potential target sites in the genome of non-target species, food
web structure, behavioral and demographic data(177), as well as the mating system and gene flow between
populations (e.g., dispersal ability and anthropogenic dispersal)(178).

Finally, yet important, the geography of Uruguay nestled in the Pampas biome, extending from southern
Brazil, through the center of Argentina until the south of the Province of Buenos Aires, where no dry
boundaries exist, represents a challenge to determine the releasing locations and merits an informed
community consent. Release into the environment could include transboundary movement and replacement
of off-target populations, with potential human/animal health impacts. erefore, eventual regional
coordination should be considered.

6. Regulatory framework for intervention on natural systems

e control or eradication of the NWS fly, despite its favorable cost-benefits relation for the livestock
industry, economy and finally the whole society, should be based on actions taken within the appropriate
legal framework.

6.1. Current regulations

Genetic modified organisms (GMOs) are regulated in most countries and covered by international
agreements such as the Cartagena Protocol under the United Nations CBD. However, excessive cautious
and restrictive GMO regulations that oen prevent the use of new technologies could prolong the risk of
animal suffering, loss of food security, environmental imbalance using insecticides and unspecific household
products. Research and development are advancing faster than regulation and CRISPR opens doors in
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many fields of production and environmental conservation (described below). e technology stands out for
reducing time, improving the use of resources, and reducing costs to generate new varieties, involving private
companies and institutions. Vegetal GMOs have been planted on millions of hectares and commercialized
for a long time, but regulation is variable worldwide, with very different endpoints. Based on past experiences
of innovation, it is desirable that GMO applicants and regulators interact to achieve the benefits of
innovation while cautiously avoiding unacceptable risks.

In Uruguay, the existence of enacted legislation (Decree No. 353/008) that regulates the importation
and various GMO uses -including research uses- within our territory- provides a safe, necessary and reliable
regulatory environment for the application of biotechnological innovations. is legislation, in addition to
providing a suitable environment for the application of safe biotechnologies, enables collaborations between
countries in the long term. e enacted legislation also represents evidence of public deliberation on the use of
genetically modified organisms within the country, and an important cultural and logistical asset that enables
the use of innovative, state-of-the-art solutions(179)(180). A well-designed risk assessment helps to manage the
tension between the desire for caution regarding the risk of intervention and concern about the risks of non-
intervention(172).

6.2. Regulatory aspects of genome editing

Genome editing by gene-specific nucleases such as CRISPR/Cas is a versatile tool that generates variations
in the recipient genome at specific target sites. e CRISPR/Cas editing system is composed of two clearly
differentiated elements, the nucleotide fraction usually constituted by the single guide RNA (sgRNA), and
the enzymatic fraction represented by the Cas9 endonuclease (see subheading 5.3.2 and Figure 2). Once
introduced into the cell the specifically designed sgRNA guides the Cas9 protein into the specific sequence
in the genome to be modified by making a double cut in the target DNA. From this point on, the non-
homologous end joining (NHEJ) or the direct homology repair (HDR) pathway of cellular repair systems
introduce the desired mutation (Figure 2b). e NHEJ pathway promotes insertion or deletion mutations
(indels) that generate, by changing the correct reading frame, a termination codon that disrupts the gene. If
the edition aims to modify the gene sequence without truncating it, the cell must be provided with a repair
template carrying the intended mutation and the HDR pathway is followed. e repair of DNA cleavage by
gene-specific nucleases results in variants at the target site, and three types of alterations can be distinguished.
In the absence of donor of DNA the NHEJ repair introduces base pair changes or small insertions/deletions
resulting in frame-shi mutations that cause premature stop codons and mRNA degradation. e exact
change cannot be predetermined and is almost random at the target site. When a DNA donor is present,
either single stranded oligonucleotides (ssODNs) or double stranded DNA, the DNA homology repair by
single-stand annealing or homology recombination occurs, respectively(181). In the cases that large DNA
elements of foreign origin are introduced it is usually considered transgenic(182). It is not the case for CRISPR-
based genome editing when foreign DNA is not added (e.g. knock out models), and then it is generally
accepted that should not be required additional regulatory oversight than other breeding varieties. e
introduction of large repair templates (e.g. knock in models) requires further regulatory oversight and specific
approval. e regulatory system for genome editing differs between countries, and while some are seen as
more innovative, others are more restrictive or conservative.

6.3. NWS fly editing

e development of gene-edited strains of the NWS fly by CRISPR/Cas to be used in a control program
could be considered beneficial as it is species specific, and mitigates damage to the environment, economy
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or health of wildlife, domesticated and human life, although it is ‘invasive’ to some extent. Since GD
applications aim to release organisms that become established in the environment and may spread
throughout different habitats, countries have the responsibility to assess transboundary risks and liability for
damage caused by such releases. It is likely that bilateral and regional measures will first establish approaches
before harmonization at higher international levels(172).

7. Economic impacts of a control program

Economic impacts of disease control programs are usually approached by the integration of economic and
epidemiological information. As before, cost-benefit analysis (CBA) is one of the most widely applied
methods in this field, at the individual producer level and at the whole livestock sector level allowing detailed
estimates of diseases costs for farmers as well as of controlling them, comparing the income changes in
different scenarios. But it could be important to consider economy-wide impacts, for example if prices -
including exchange rate- can be affected by the disease (especially when it implies changes on the access
to international markets). erefore, tools that also capture spread indirect effects (e.g., through changes
in prices and/or input-output relationships between productive sectors) help to gain broader insights on
disease’s economic impact(183). It has been suggested the integration of epidemiological information and
models with Input Output (IO), Partial Equilibrium (PE) models, multi-market models, or Computable
General Equilibrium Models (CGEM)(184). CGEM are mathematical representations of the entire economy
that enable the estimate of direct, indirect and induced impacts of external factors, changes in technology
or in policies, on both macroeconomic and sectoral indicators. It allows analyses of changes in the levels of
production, exports and imports by sector, and additionally captures the reallocation of resources between
productive sectors, including labor employment, in response to changes in relative returns.

e NWS fly eradication programs in North and Central America required the economic justification for
its execution and several appraisals based on consumers and producers’ surplus theory have been developed
and operationalized through CBA(10)(121)(122)(123)(124)(185)(186)(187)(188). All analysis supports the economic
profit of the NWS eradication, with high net returns for farmers and the whole economy in those countries.
According to Wyss(122), in addition to the annual benefits obtained by the American, Mexican and Central
American farmers thanks to the eradication, there is a multiplier effect (by a 3.5 factor) of the livestock
sector towards other productive sectors. is annual impact on the whole economy was estimated at USD
3,000 million for the United States, USD 1,100 million for Mexico and USD 297.8 million for the Central
American countries (USD 4,660, USD 1,708 and USD 463 million in 2020, adjusted for inflation). Also,
it was concluded that the benefit for consumers was similar to that of producers, so that the sum of both
components results in a very important general effect on the economy. Furthermore, in Libya the economic
evaluation showed that the eradication program was a remarkably profitable investment, with a cost-benefit
ratio of 5 in the infested zone, and 10 for the whole of the economy(125)(132)(189).

In South America pre-feasibility studies of three eradication proposals for the Mercosur region concluded
they were highly convenient from the socio-economic point of view, with internal rates of return (IRR)
between 121% and 157%, and cost-benefit ratios of between 2.97 and 3.91(190). e sensitivity analysis
showed that even if program costs or investments increased 50%, or benefits fell 50%, the Net Present Value
(NPV) continues to be positive. One of the main expected impacts is the economic efficiency improvement
through a drastic reduction in costs of labor and veterinary supplies for the treatment of affected animals.

As mentioned before, up to date, there is no official program for the NWS fly control in Uruguay;
however, livestock farmers and authorities have agreed on its importance. Its economic feasibility, financing
alternatives, environmental and social impacts and other institutional concerns, such as governance, are
under active discussion and analyzes are taking place. Two alternative SIT-based programs were evaluated,
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one proposed by FAO/IAEA, that represent a first step in of a Subregional Strategic Plan for the NWS
eradication in South America(99)(191)(192), and another by USDA/COPEG/ MGAP and the national
agricultural institutions.

e FAO/IAEA strategy consists of a progressive eradication from south to north of Uruguay and
gradually advancing towards the north of the continent. It is based on the establishment of four regions (East-
West strips) in the Uruguayan territory and later containment barriers in the borders with Argentina and
Brazil to keep the country free of NWS, similarly to what has been done in the Panama-Colombian border.
is program aims to eradicate the NWS fly in 7 years, releasing a maximum of 55 million sterile NWS pupae
per week, with a simple cumulative cost of USD 154.6 million in the first 10 years, that has been taken as
evaluation horizon. A CBA of the FAO/IAEA program for Uruguay estimated direct losses caused by the
NWS fly on livestock over a 14-year time horizon, concluding that in Uruguay it would achieve an economic
net present value (NPV at 7.5%) of USD 97.924 million (ranging from USD 86.2 to USD 158.4 million)
and an economic IRR of 27% (the minimum IRR of 14.7% exceeds the social discounted rate of 7.5%)(129).
e discounted benefits always exceed the discounted costs with a cost-benefit ratio of 1.87 (ranging from
1.71 to 2.26) and a payback period of 8 years, indicating the convenience of implementing the proposed
eradication program. Additionally, through a CGEM calibrated for Uruguay OPYPA-MGAP simulated the
macroeconomic and sectoral effects of the FAO/IAEA program(193). e working hours fall for surveillance
and treatment of NWS fly and avoided livestock deaths were modeled as a productivity increase, and the
lower expenditure on veterinary supplies for myiasis treatment and prevention was modeled as a reduced use
of chemical products coefficient. e costs and investments required to implement the eradication program
were included in the model as an increase in government consumption and investments, and the import of
sterile pupae was introduced through a transfer from the Uruguayan government to the rest of the world
(amounts were taken from)(129). e impacts of three alternative financing scenario[2] were also considered.
All simulations showed that a successful eradication strategy would have positive impacts on the whole
economic activity, particularly on livestock farming and associated productive sectors. Furthermore, in the
labor market, the average salary and employment of the entire economy would receive positive impacts as
well. Total exports, as well as the general government collection, would increase due to the effects of direct,
indirect and induced effects of the eradication program.

e USDA/COPEG/MGAP program aims to achieve the NWS fly eradication within three years, one
year of preparation and two years of sterile fly release. Uruguay will be divided into four regions (East-
West strips) and the sterile fly releasing will begin from the south. is proposal plans to use between 8
and 26 million pupae/week, significantly less than that estimated for the FAO/IAEA program. Because the
eradication has been projected to be by region, it is expected that benefits are partially and progressively
achieved. Prevention and treatment (and its costs) will stop as autochthonous cases of myiasis disappear,
but vigilance for reintroductions must be maintained for an indeterminate period. Sterile flies and field
inspectors would be permanently required to maintain the myiasis free status, at least until Argentina and
south Brazil do not reach the eradication. It was estimated a total program cost of USD 40 million and about
USD 4.5 million per year for the border barriers, whereas in an evaluation horizon of 10 years the cumulative
cost of the program would be USD 62.5 million(130). According to the CBA, the project would achieve a NPV
at 7.5% (i.e., ~USD 146 million) and an economic IRR of 96% with a cost-benefit ratio of 4.3, indicating that
is a highly profitable investment. Program risk was assessed by sensitivity analysis of several negative scenarios.
First, a longer program, which implies higher operational costs as well as a delay in the eradication benefits.
Even in the worst scenario where eradication takes 9 years the NPV is still positive. Second, a higher number
of sterile flies to be released, considering that FAO/IAEA proposal, established twice the number of flies per
linear nautical mile (6,000 vs 3,000). Although these flies’ requirement is three times the estimated, NPV is
still positive. ird, as already mentioned, saving labor is the main benefit of an NWS fly eradication program,
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so overestimating the working days to surveillance and disease treatment could over-evaluate the NPV of the
program. A sensitivity exercise was carried out re-estimating project indicators when the benefit from labor
savings fell to half of that estimated by experts; in all scenarios the NPV is positive. Fourth, an important
part of the potential benefits results from avoiding deaths, saving veterinary supplies and surveillance time
in sheep herds. However, the national sheep stock showed a downward trend along the last 20 years, and in
2019 it was reduced to half the herd of 2000(194)(195). If this trend continues in the next few years, part of the
benefits of the NWS eradication program would be reduced. An extreme scenario in which the sheep herd
falls 10% cumulative annually (~3 times faster than observed from 2000 to 2019) was carried out, and the
NPV is still positive. In summary, these univariate analyses showed that none of these factors alone would
compromise the economic feasibility of the program.

To further stress the project feasibility a joint sensitivity analysis was conducted taking factors two by
two and in none of the scenarios the NPV turned zero or negative. However, when three or more factors
take unfavorable values together, scenarios arise in which the discounted program costs equal or exceed the
benefits, turning the program economically inconvenient. Despite the economic feasibility of the NWS fly
eradication program in Uruguay has been supported by these analyses (see Köbrich Grüebler(129), Baraldo
and Durán(130) and Ackermann and others(193)), the occurrence of unfavorable scenarios, with negative values
of several factors simultaneously, must be considered in the decision-making process.

8. Perspectives and knowledge gaps

e ultimate goal of reducing the incidence of myiasis in Uruguay -which has been extensively discussed
in the present review as a promising action to increase animal and human health by controlling or ideally
eradicating the NWS fly- can be achieved by two complementary strategies. On the one side, the well-known
SIT-based strategy is being actively discussed by authorities, experts and livestock producers, and some efforts
have been made in order to its implementation in the near future. On the other side, a CRISPR/Cas-based
strategy to generate a gene drive system aiming to introduce sterility in the NWS fly wild populations is
under research. Both strategies can be used in a complementary way in the same eradication program, and/or
the CRISPR/Cas-based strategy can be the substitute of the SIT-based program when it finalizes, designed
specifically to keep the sanitary status achieved. An advantage of the CRISPR/Cas-based is its national
development, in collaboration with US institutions, that warrant the complete control of the strategy. Once
NWS fly gene drive has been produced and tested, local institutions, authorities and ultimately livestock
producers can be the owners of this biotechnology. Another advantage of the CRISPR/Cas approach is the
know-how that will be acquired by local scientists and scientific institutions, opening the possibility to locally
develop new strategies for other ectoparasites and/or vectors important for animal and public health.

In the case of the NWS fly, although it is also a human health issue, its importance for meat producing
countries, particularly Uruguay and region, has been well explained in the present review. Highlighting
animal welfare aspects -especially considering the animal suffering caused by myiasis-, the implementation
of eradication measures is clearly relevant. Insecticide usage has proved to be inefficient for the NWS
fly containment at a broad geographic scale and its diverse natural habitats. In contrast, environment-
friendly strategies such as SIT and/or gene drives are more efficient for NWS fly control in low-density
populations and have been specifically outlined and could prove effective in limiting its spread. e gene
drive strategy is considered the least environmental impacting technology, while developing logistical and
scientific capabilities. Innovation in insect and disease control methods reveal a constant concern for
human and animal health, plants, and ecosystems. On the other hand, the country must adapt its biosafety
regulatory framework for animal and microorganism regulation, developing specific methodologies for
problem formulation in risk analysis.
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According to Oliva and others(179), the success of control strategies that integrate sterile insect releases
as part of broader pest/parasite control or health management programs depends largely on gaining public
understanding and acceptance. Integration of SIT must be done carefully and requires proper long-term
planning, as potential areas for the implementation of control programs are diverse and culturally distinct
well-tailored forms of information, dissemination, and public interaction strategies are required. e public
concern about GMOs will also influence the debate on different SIT and/or biotechnological based
strategies, or on non-intervention in the environment. On this point, Esvelt(196), with an open and responsive
approach to science, mentions that for the public to have a voice in decisions that will affect the shared
environment, research on preferential inheritance and gene drive should be conducted openly from the
earliest stages. is should be specifically conducted by a community of trusted scientists, considering the
concerns that may arise from the social community and who, informed about the topic, can guide future
research and decision making.

According to Collins(180), it is not straightforward to reconcile the argument for not intervening at all
in nature with GD proposals used to alleviate the burden of parasitic or infectious diseases in animals and
humans, conserve species, or increase agricultural productivity. Ultimately, reconciling these competing
interests and values will determine how intrusive one is willing to be in shaping populations and ecosystems.
It also highlights the importance of using multidisciplinary and interdisciplinary approaches to decision
making related to the development and application of preferential inheritance technology. e US National
Academy of Sciences, Engineering, and Medicine committee(180) called for a responsible scientific approach
that requires ongoing evaluation, assessment, and education regarding social (defining types of stakeholder
involvement), environmental, regulatory, and ethical considerations.

From the social sciences point of view(179), the release of genetically modified insects involves three
essential conditions: a genuine willingness to involve the public (which might not be evident to scientists and
institutional partners), conducting research publicly, and allocating sufficient human and financial resources
for public participation activities.
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Notes

[1] e study's main purpose was monitoring the risk of foot and mouth disease, but it also asked relevant questions about NWS
prevalence and direct costs faced by farmers.
e strata design was: Stratum 1: farms with a minimum of 50 cattle, within a buffer of 25 km from the border, including ports.
Stratum 2: farms outside the buffer, with more than 200 cattle.
Stratum 3: farms outside the buffer, with between 50 and 200 cattle.
Stratum 1 represents 50% of the selected farms. Stratum 2 and 3, which correspond to the remaining 50%, were weighted with
75% and 25%, respectively.

[2] Scenario 1: external debt financing (e.g. IBD, World Bank, Treasury bonds, etc.); Scenario 2: internal debt financing (e.g.
issuance of government bonds or securities of a trust), and Scenario 3: livestock tax during the first years of the program (e.g. waiver
of municipal credit or any tax on slaughter, or sales of cattle or meat).

Alternative link

https://bit.ly/30h7qIh
https://bit.ly/31EXkRT
https://bit.ly/3qk2WLA
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