Carta al editor

Results of the Rapidec CARBA NP test in El Salvador

Oliva Marín, José Eduardo; Luna Boza, María José; Grande Figueroa, Miguel Oscar; Villatoro Ventura, Reina Esmeralda; Santos Herrera, Rene Guillermo; Orellana de Figueroa, Ana Patricia; Velásquez Escobar, Milagro Arenys; Cruz, Zonia Elizabeth; Rivera Laínez, Ana Alejandra; Henríquez, Patricia Evelyn; Orellana Morales, Patricia Danne; Iihoshi, Naomi; Rodríguez Araujo, David Saúl; Domínguez, Rhina

Dosé Eduardo Oliva Marín

jose.oliva@salud.gob.sv Instituto Nacional de Salud, El Salvador

María José Luna Boza

Laboratorio Nacional de Salud Pública, El Salvador

Miguel Oscar Grande Figueroa

Laboratorio Nacional de Salud Pública, El Salvador

D Reina Esmeralda Villatoro Ventura

Secretaría Ejecutiva del Consejo de Ministros de Salud de Centroamérica (SE-COMISCA), El Salvador

Rene Guillermo Santos Herrera

ECHO/SE-COMISCA, El Salvador

Ana Patricia Orellana de Figueroa

Coordinación Red Nacional de Laboratorios Clínicos,

MINSAL, El Salvador

Milagro Arenys Velásquez Escobar

Hospital Nacional San Juan de Dios, San Miguel, El Salvador

Zonia Elizabeth Cruz

Hospital Nacional de la Mujer, El Salvador

Ana Alejandra Rivera Laínez

Hospital Nacional San Juan de Dios, Santa Ana, El Salvador

Patricia Evelyn Henríquez

Hospital Nacional de Niños Benjamín Bloom, El Salvador

Patricia Danne Orellana Morales

Hospital Nacional Rosales, El Salvador

Naomi Iihoshi

SE-COMISCA, Nuevo México, Estados Unidos

David Saúl Rodríguez Araujo

SE-COMISCA, San Salvador, El Salvador

D Rhina Domínguez

Instituto Nacional de Salud, El Salvador

Alerta

Ministerio de Salud, El Salvador ISSN-e: 2617-5274 Periodicidad: Semestral vol. 6, núm. 1, 2023

Recepción: 16 Diciembre 2022 Aprobación: 04 Enero 2023 Publicación: 30 Enero 2023

URL: http://portal.amelica.org/ameli/journal/419/4193691012/

DOI: https://doi.org/10.5377/alerta.v6i1.15451

Citación recomendada: Oliva J, Luna MJ, Grande O, Villatoro E, Santos R, Figueroa P. et al. Resultados del uso de prueba Rapidec CARBA NP en El Salvador. Alerta. 2023;6(1):88-90. DOI: 10.5377/alerta.v6i1.15451

SRA. EDITORA:

En la actualidad existen pruebas rápidas de detección de carbapenemasas disponibles comercialmente que permiten generar resultados en un lapso de tiempo menor a dos horas. Una de estas pruebas es la Rapidec. CARBA NP, que se basa en la detección directa de la hidrólisis de los carbapenémicos por bacterias productoras de carbapenemasas. La agilidad en la detección de estas enzimas es relevante en nuestro país, como se describe en el artículo publicado por Villatoro *et al.* en Alerta durante 2018, en el cual reportan que de 2014 a 2016, en 26 de los 31 hospitales de El Salvador, se aislaron bacterias productoras de carbapenemasas¹.

Mediante esta prueba se analizó la presencia de carbapenemasas en 122 aislamientos pertenecientes a la familia Enterobacteriaceae, así como en bacilos no fermentadores, con perfiles de susceptibilidad disminuida o resistencia a cualquiera de los siguientes carbapenémicos: ertapenem, imipenem o meropenem. Estos fueron analizados entre marzo de 2020 y agosto de 2021, de cinco hospitales pertenecientes a la red de salud pública de El Salvador.

Los aislamientos se obtuvieron de muestras estériles y no estériles (sangre, orina, heces, secreciones purulentas, entre otros). La lectura e interpretación de la prueba rápida se llevó a cabo en los laboratorios donde fue realizada, siguiendo las instrucciones del fabricante. Posteriormente, fueron enviadas al Laboratorio Nacional de Salud Pública (LNSP) para su confirmación.

Se incluyeron 115 aislamientos en el análisis, debido a que siete de los recibidos en el LNSP no resultaron viables. Las bacterias aisladas fueron: Acinetobacter baumannii (58/50,4 %), Klebsiella pneumoniae (21/18,3 %), Escherichia coli (18/15,7 %), Pseudomonas aeruginosa (10/8,7 %), Enterobacter cloacae (7/6 %) y Proteus mirabilis (1/0,9 %). Lo anterior concuerda con lo reportado por Villatoro et al. en 2018: de 2014 a 2016 A. baumannii fue la bacteria productora de carbapenemasas identificada con mayor frecuencia en El Salvador $(85\%)^1$.

De los 115 aislamientos analizados, 104 fueron clasificados como carbapenemasa positivos y 11 como carbapenemasa negativos, utilizando el algoritmo de detección de carbapenemasas del LNSP: ácido etilendiamino tetraacético, ácido fenilborónico, test de Hodge modificado con Triton y el método modificado de inactivación de carbapenémicos. De los 104 carbapenemasa positivos, 49 fueron catalogados

como productores de metalobetalactamasa (MBL) y 55 como productores de oxacilinasa (OXA). No se detectó ningún aislamiento productor de carbapenemasa de Klebsiella pneumoniae (KPC). La detección de carbapenemasas por microorganismo aislado se distribuyó de la siguiente manera: Acinetobacter baumannii (tres MBL y 55 OXA), Klebsiella pneumoniae (18 MBL), Escherichia coli (17 MBL), Pseudomonas aeruginosa (seis MBL) y Enterobacter cloacae (cinco MBL).

Algunos países como México, Panamá, Puerto Rico y Cuba, así como Costa Rica, República Dominicana, Trinidad & Tobago, Colombia, Venezuela, Perú, Ecuador, Brasil, Paraguay, Uruguay, Argentina y Chile^{2,3} han identificado variantes de KPC, metalobetalactamasa de Nueva Delhi (NDM), metalobetalactamasa codificada por el integrón de Verona (VIM) y metalobetalactamasa imipenemasa (IMP), en Enterobacteriaceae, K. pneumoniae, P. aeruginosa y A. baumannii.

Las bacterias que con mayor frecuencia se detectaron como productoras de carbapenemasas fueron: Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa y Enterobacter cloacae. Estos datos son similares a los reportados por otros estudios llevados a cabo en Latinoamérica, región en la que se han reportado A. baumannii, K. pneumoniae, E. coli y E. cloacae productores de KPC y NDM, P. aeruginosa productora de KPC, VIM e IMP, así como A. baumannii productor de VIM e IMP³.

La prueba Rapidec. CARBA NP mostró un valor predictivo positivo del 99 %. Este valor concuerda con lo reportado en otros estudios de la misma naturaleza (92,6-100 %)^{4,5}. De los 115 aislamientos, hubo 11 en los que la presencia de carbapenemasas no fue confirmada por el LNSP. De estos aislamientos, 10 fueron analizados en el LNSP con la prueba Rapidec. CARBA NP y su algoritmo de detección de carbapenemasas y uno, solo con el algoritmo. De las bacterias a las que no se les confirmó la presencia de carbapenemasas, cuatro fueron P. aeruginosa con resistencia a carbapenémicos por impermeabilidad de membrana más bombas de eflujo, así como tres K. pneumoniae, dos E. cloacae y una E. coli, productoras de betalactamasas de espectro extendido (BLEE) y un P. mirabilis al que no se le detectó mecanismo de resistencia bacteriana.

Existen varios factores que pudieron conllevar a los 11 resultados discordantes en los laboratorios locales, que podrían ser exógenos a la prueba en sí: la divergencia en la interpretación colorimétrica de parte de los observadores⁶, el tiempo de incubación del cultivo que pudo no haber permitido la expresión completa de las enzimas⁷, el intervalo de tiempo entre la recepción de la muestra clínica y el inicio de su procesamiento, la existencia de colonias hipermucoides⁸, la presencia de betalactamasa AmpC⁹, un inóculo bacteriano insuficiente y/o la presencia de aislamientos con actividad débil de carbapenemasas 10.

Rapidec. CARBA NP es una prueba rápida y útil para confirmar la presencia de carbapenemasas en Enterobacteriaceae y otros bacilos Gram negativos como A. baumannii y P. aeruginosa, entre otros. Rapidec. CARBA NP puede utilizarse en entornos clínicos como apoyo en la elección de antibióticos, así como apoyo a los comités de control de infecciones en sus programas de optimización del uso de antimicrobianos. Lo anterior abona a la vez, en la detección y manejo oportunos de las infecciones asociadas a la atención sanitaria, acciones fundamentales en el control de la expansión de la resistencia antimicrobiana en los hospitales.

AGRADECIMIENTO

A los Centros para el Control y la Prevención de Enfermedades por su apoyo en lo referente al patrocinio de las pruebas de laboratorio necesarias para la realización del estudio.

FINANCIAMIENTO

Las pruebas Rapidec. CARBA NP fueron donadas al Ministerio de Salud por los Centros para el Control y la Prevención de Enfermedades por medio del Acuerdo Cooperativo con la Secretaría Ejecutiva del Consejo de Ministros de Salud de Centroamérica y República Dominicana.

REFERENCIAS BIBLIOGRÁFICAS

- 1. Villatoro E, Cardoza R, de Fuentes Z, Hernández C. Identificación de bacterias resistentes a antibióticos carbapenémicos en hospitales de El Salvador. Alerta. 2018;1(2): 8-15. DOI: 10.5377/alerta.v1i2.7135
- 2. Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther. 2017;15(3):277-297. DOI: 10.1080/14787210.2017.1268918
- 3. García-Betancur JC, Appel TM, Esparza G, Gales AC, Levy-Hara G, Cornistein W, et al. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther. 2021;19(2):197-213. DOI: 10.1080/14787210.2020.1813023
- 4. Elawady B, Ghobashy M, Balbaa A. Rapidec Carba NP for Detection of Carbapenemase-Producing Enterobacteriaceae in Clinical Isolates: A Cross-Sectional Study Surg Infect. 2019;20(8):672-676. DOI: 10.1089/sur.2019.084
- 5. Hombach M, von Gunten B, Castelberg C, Bloemberg GV. Evaluation of the Rapidec® Carba NP Test for Detection of Carbapenemases in Enterobacteriaceae. J Clin Microbiol. 2015;53(12):3828-3833. DOI: 10.1128/ JCM.02327-15
- 6. Mancini S, Kieffer N, Poirel L, Nordmann P. Evaluation of the RAPIDEC® CARBA NP and β-CARBA® tests for rapid detection of Carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 2017;88(4):293-297. DOI: 10.1016/j.diagmicrobio.2017.05.006
- 7. McMullen AR. Multicenter evaluation of the RAPIDEC* CARBA NP assay for the detection of carbapenemase production in clinical isolates of Enterobacterales and *Pseudomonas aeruginosa*. Eur J Clin Microbiol Infect Dis. 2020;39(11):2037-2044. DOI: 10.1007/s10096-020-03937-1
- 8. U. S. Food and Drug Administration. 510(k) Substantial equivalence determination decision summary assay only template. FDA. 2020. [citado 28 febrero 2022]. Disponible en: https://www.accessdata.fda.gov/cdrh_docs/re views/K162385.pdf
- 9. Thomson G, Turner D, Brasso W, Kircher S, Guillet T, Thomson K. High-Stringency Evaluation of the Automated BD Phoenix CPO Detect and Rapidec* Carba NP Tests for Detection and Classification of Carbapenemases. J Clin Microbiol. 2017;55(12):3437-3443. DOI: 10.1128/JCM.01215-17
- 10. Jousset AB. False-Positive Carbapenem-Hydrolyzing Confirmatory Tests Due to ACT-28, a Chromosomally Encoded AmpC with Weak Carbapenemase Activity from Enterobacter kobei. Antimicrob Agents Chemother. 2019;63(5). DOI: 10.1128/AAC.02388-18