
Complete issue

More information about this article

Journal's webpage in redalyc.org

Revemop
ISSN: 2596-0245
revemop@ufop.edu.br
Universidade Federal de Ouro Preto
Brasil

Lugo-Armenta, Jesús Guadalupe; Pino-Fan, Luis R; Hernández, Blanca R. Ruiz
Chi-square Reference Meanings: a Historical-epistemological Overview

Revemop, vol. 3, 2021, January-December
Universidade Federal de Ouro Preto

Brasil

DOI: https://doi.org/10.33532/revemop.e202108

http://portal.amelica.org/revista.oa?id=388&numero=1841
http://portal.amelica.org/388/3881841008
http://portal.amelica.org/revista.oa?id=388
http://www.amelica.org
http://portal.amelica.org/revista.oa?id=388


  
 

 

  

  

  10.33532/revemop.e202108 eISSN 2596-0245 

 

 
Revemop, Ouro Preto, Brasil, v. 3, e202108, p. 1-33, 2021 1 

 

Chi-square Reference Meanings: a Historical-epistemological 
Overview 

 
Jesús Guadalupe Lugo-Armenta Doutorando em Educación Matemática pela Universidad de Los Lagos, campus Osorno. Osorno, Los Lagos, 

Chile. 

 http://orcid.org/0000-0001-6679-5115  
 jesus.lugo@ulagos.cl 

 
Luis R. Pino-Fan 

Doutor em Didáctica de la Matemática pela Universidad de Granda. Professor da Universidad de Los Lagos, Osorno, Los Lagos, Chile. 

 http://orcid.org/0000-0003-4060-7408  
 luis.pino@ulagos.cl 

 
Blanca R. Ruiz Hernández  

Doutora em Didáctica de la Matemática pela Universidad de Granda. Professora do Tecnológico de Monterrey, Monterrey, Nuevo León, México. 

 http://orcid.org/0000-0003-0157-3866  
 bruiz@tec.mx 

 
Recebido em 10/05/2021 

Aceito em 07/06/2021 
Publicado em 21/06/2021 

 
 

 

Abstract: The present article shows a historical-epistemological study on the Chi-square statistic. In which 
theoretical-methodological notions from the Onto-Semiotic Approach (OSA) of mathematical cognition and 
instruction were used to identify four problems that have been key to the evolution of the Chi-square statistic: 
the Goodness-of-fit-test, the test of independence, the test of homogeneity and distribution. Furthermore, 
various meanings of the Chi-square statistic were recognized in the mathematical-statistical practices that 
are used to solve each of those problems. These meanings could help to establish epistemic criteria that 
allow, on the one hand, to propose progressive levels of inferential reasoning for the statistic (from informal 
to formal); and on the other hand, to design tasks oriented to promote the understanding of the diverse 
meanings of the Chi-square. 

 

Keywords: Chi-square. History and epistemology. Inferential reasoning. Meanings. Statistics education. 

 

Significados de Referência da Estatística Qui-quadrado: um Olhar 
Histórico-epistemológico 

 

Resumo: Este artigo apresenta um estudo histórico-epistemológico sobre a estatística Qui-quadrado. Para 
tanto, são utilizadas algumas noções teórico-metodológicas da Abordagem Onto-Semiótica (EOS) do 
conhecimento e do ensino matemático, que nos permitiram identificar quatro problemas que têm sido 
fundamentais para a evolução da estatística Qui-quadrado: teste de adequação, teste de independência, teste 
de homogeneidade e distribuição. Além disso, nas práticas matemático-estatísticas realizadas para resolver 
cada um destes problemas, foram identificados vários significados da estatística Qui-quadrado, o que permitirá 
estabelecer critérios epistemológicos que permitem, por um lado, propor níveis progressivos (do informal ao 
formal) do raciocínio inferencial para a referida estatística; e por outro lado, desenhar tarefas que visem 
promover a compreensão dos diversos significados do Qui-quadrado. 

 

Palavras-chave: Qui-quadrado. História e epistemologia. Raciocínio inferencial. Significados. Educação 
estatística. 
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Significados de Referencia del Estadístico Chi-cuadrada: una 
Mirada Histórico-epistemológica 

 

Resumen: El presente artículo muestra un estudio de tipo histórico-epistemológico sobre el estadístico 
Chi-cuadrado. Para ello, se utilizan algunas nociones teórico-metodológicas del Enfoque Onto-Semiótico 
(EOS) del conocimiento y la instrucción matemática, las cuales nos permitieron identificar cuatro 
problemáticas que han resultado clave para la evolución del estadístico Chi-cuadrada: prueba de bondad 
de ajuste, prueba de independencia, prueba de homogeneidad y distribución. Además, en las prácticas 
matemáticas-estadísticas llevadas a cabo para resolver cada una de estas problemáticas, se identificaron 
diversos significados del estadístico Chi-cuadrada, los cuales permitirán establecer criterios 
epistemológicos que permitan, por un lado, proponer niveles progresivos (de lo informal a lo formal) del 
razonamiento inferencial para dicho estadístico; y por otro, diseñar tareas orientadas a promover la 
comprensión de los diversos significados de la Chi-cuadrada. 

 

Palabras clave: Chi-cuadrada. Historia y epistemología. Razonamiento inferencial. Significados. 
Educación estadística. 

 

1 Background 

Currently, Statistics and specifically Inferential Statistics, has taken a crucial role in 

professional, as well as, in the daily life of a significant number of people, as the world in which 

they develop is rapidly changing, originating information and data that quickly expands and varies 

every day. However, several investigations (e.g., SALDANHA; THOMPSON, 2002; BAKKER; 

GRAVEMEIJER, 2004; ROSSMAN, 2008; REABURN, 2014; HOEKSTRA, 2015), have reported 

difficulties for students of different educational levels in comprehending and connecting notions 

considered as essential for Inferential Reasoning, such as Variation, distribution, sampling, 

sampling variability, sampling distribution, p-value, level of significance, construction of hypothesis, 

critical values in statistical distribution, and statistic-parameter. 

In this sense, new proposals on how to work Inferential Reasoning have emerged from an 

informal and formal perspective. On the one hand, the perspective of Informal Inferential Reasoning 

(IIR) aims at integrating and giving meaning to statistical concepts generating an early contact with 

Inferential Statistics for students (e.g., ZIEFFLER et al., 2008; MAKAR; RUBIN, 2009; DOERR et 

al., 2017). On the other hand, from the perspective of Formal Inferential Reasoning (FIR), research 

has been conducted (e.g., TARLOW, 2016; RIEMER; SEEBACH, 2014; ROCHOWICZ, 2010) on 

student's comprehension of the formal methods of statistical inference; for example, the reflection 

about the logic of hypothesis testing, the different moments of decision-making, and p-value. 

The teaching of statistics can address the challenge of introducing the notions coherently 

from an IIR perspective, starting from the intuitive aspects. Nevertheless, Batanero (2013) makes 
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a call for reflection on the exact level of formalization required to teach the statistical notions. Some 

investigations (e.g., JACOB; DOERR, 2014; PFANNKUCH et al., 2015; MAKAR; RUBIN, 2018), 

indicate the need to promote the FIR progressively in students. In order to promote FIR 

progressively, it is primarily necessary to comprehend how the statistical notions emerge from a 

range of mathematical practices that helped to solve problems from different scientific fields, which 

allows for the identification of diverse meanings for the same notion. This article focuses on the 

study of the Chi-square statistic considering its importance in the construction of a methodology for 

hypothesis tests and its current relevance in Statistics Education. 

Thus, this article aims at proposing a reconstruction of the holistic meaning attributed to 

the Chi-square statistic; by distinguishing both the different critical problems for its emergence and 

development and the characterization of the diverse meanings that it has had throughout history. 

We consider that the characterization of the meanings for this statistic helps to retrieve its 

mathematical richness and allows rescuing elements from history to propose progressive levels 

(from informal to formal) of Inferential Reasoning of the Chi-square statistic. Which, in turn, will 

enable the design of activities for the gradual comprehension of the statistic. 

 

2 Theoretical and methodological framework 

To carry out this study, we used some theoretical-methodological tools from the Onto-

Semiotic Approach (OSA) of mathematical cognition and instruction (GODINO et al., 2007). The 

OSA allows to make a detailed analysis of the Chi-square statistic meanings through a profound 

description of the problems, the mathematical practices developed to solve such problems, and the 

mathematical objects that intervene in those practices. The notion of system of practices plays a 

crucial role in this theoretical approach. It refers to "any action or manifestation (linguistic or 

otherwise) carried out by somebody to solve mathematical problems, to communicate the solution 

to other people, to validate and generalize that solution to other contexts and problems" (GODINO; 

BATANERO, 1994, p. 334). The mathematical practices can be personal or shared by a group 

within an institution (institutional practices). Godino and Batanero (1994), define the institutional 

practices as "The institutional system of practices, associated to a field of problems, it is constituted 

by the practices considered as significative to solve a field of problems C and shared in the heart 

of an institution I" (p. 337). 

In the mathematical practices adopted to solve a determined field of problems, 

mathematical objects intervene and emerge. The mathematical objects can be ostensive (like 
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symbols, graphs) and non-ostensive (as concepts, propositions). They can emerge from 

institutional systems of practices (institutional objects), or personal systems of practices (personal 

objects). The OSA framework also proposes types of primary mathematical objects intervening in 

the system of practices (GODINO et al., 2007): linguistic elements, situations/problems, 

concepts/definitions, propositions/ properties, procedures, and arguments. The primary 

mathematical objects are interrelated, forming frameworks called configurations, which can be 

epistemic if the frameworks of objects are an institutional practice, or cognitive if those frameworks 

configure a personal practice. The notion of configuration "responds to the need to identify the 

types of objects and processes that intervene and emerge in the mathematical practices used to 

solve the situations-problems" (GODINO et al., 2019, p. 39). 

In this sense, in OSA, the meaning of mathematical objects is conceived from a pragmatic-

anthropological perspective, which considers the relativity of the context in which these are used. 

In other words, the meaning of a mathematical object can be defined as the system of operative 

and discursive practices that a person (or an institution) develops in order to solve a particular type 

of situations-problems in which such object intervenes (GODINO; BATANERO, 1994). Thus, the 

meaning of a mathematical object can also be considered from two perspectives, institutional and 

personal. The notion of institutional meaning allows studying the practices where the mathematical 

objects emerge, its historical evolution, and it also addresses the contexts. This type of study is 

called historical-epistemological, and through them, it is possible to determine the holistic meaning, 

which comprises various partial meanings of a mathematical object (PINO-FAN et al., 2011), which 

in turn have an epistemic configuration associated with them. 

The notion of onto-semiotic configuration has been employed in different investigations to 

characterize the holistic meaning of diverse mathematical notions, mainly of calculus (e.g., 

GODINO et al., 2011; PINO-FAN et al., 2018). It was used in the present study, as it allowed us to 

locate the problems that were key to the development of the Chi-square statistic and how they were 

solved. Those problems and the respective mathematical practices used to solve them are 

associated with an epistemic configuration, which helps us to determine a partial meaning of the 

statistic mentioned. 

This study employs a qualitative methodology (COHEN et al., 2011) of historical-

documentary type, in which primary sources, original texts, secondary sources, mathematics, and 

statistics history books, were revised. 
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3 Historical evolution of the Chi-square statistic 

We identified three main problem areas in the development and evolution of the chi-square 

statistic (χ2): the goodness-of-fit-test, independence, and homogeneity. Additionally, the 

importance that the χ2 distribution has in these tests is considered as the asymptotic distribution 

of the χ2 statistic. 

 

3.1 The beginnings of the goodness-of-fit-test  

In the eighties of the XIX century, Francis Galton, Ysidro Edgeworth, and Karl Pearson 

initiated the works that provided the main contributions for the construction of an empirical and 

conceptual methodology for statistics. In 1875, Galton presented the method of intercomparison, 

through which he organized the data in increasing order and graphed the data values versus the 

ranges (quartiles). He called this graphic ogive. In the ogive m at 1 

2
 represents the mean value of 

the series (the median), p at 1 

4
 and q at 3 

4
 provide data for estimating the divergence taken in 

connection with m; accordingly, q − m is the divergence or probable error (of that portion of the 

series that exceeds the mean), while m − p corresponds to other portion of the series. According 

to Galton (1875), when the series is symmetrical q − m = m − p. 

Galton (1875) worked in the opposite direction of the law of frequency of error, and stated 

that, "since such and such magnitudes occur with such and such degrees of frequency; therefore 

the differences between them and the mean value are so and so, as expressed in units of probable 

error" (p. 38). In 1885, Galton worked on the graphic method, which consisted of two parts. In the 

first, he resumed the method of intercomparison, except that he was no longer working uniquely 

with quartiles in the base of the ogive, but used the percentiles and considered the quartile two or 

the median as 0 in the sense of the works developed by Quetelet, where the other elements of the 

set are considered deviations of the representative to ± 50. In the second part, he indicated that 

to apply this test it was necessary to change the line of reference from which the ordinates were 

originated, parting the curve of distribution (the ogive) in two parts, "and the lowermost reversed" 

(GALTON, 1885 p. 262). He also provided a table of the normal curve of distribution of error and 

commented that: 

In order to bring the observed values into a form suitable for comparison with this table, 
we must begin by measuring the observed deviates at ± 10°, 20°, 25°, 30°, 40°, and 

45° […], if the series is “normal,” the values so obtained will be identical with those in 
column B, and if it is approximately normal, they will correspond approximately. 
(GALTON, 1885, p. 265)    
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In the subsequent years, the graphic method of Galton was widely used, in his works and 

others'. For example, in 1890, Weldon adjusted the data about the carapace lengths of the 

Plymouth shore crab to the normal curve following that method as it was then appropriate for the 

data. However, in later work in 1892, when he was analyzing the double-humped curve carapace 

in female shore crabs of Naples, noticed that Galton's graphic method was not suitable enough for 

this not-normally-distributed data. Following Hald (2007), Pearson helped Weldon with the analysis 

of zoological data for studies on evolution. From this, Pearson felt the need for a series of 

continuous distributions to describe the biological phenomena that he was studying, and in 1895 

he published a system or family of continuous probability distributions (seven types of frequency 

curves). In this distribution system, he used the same measures of skewness and kurtosis as 

Thiele, but he expressed them in terms of moments. 

In 1894, in an early consideration of the goodness-of-fit-test with the χ2 statistic, Pearson 

"demonstrated how to find ∑ s y⁄ , where s equalled the difference between the observation 

polygon and the theoretically expected curve and y its corresponding ordinate" (MAGNELLO, 2005, 

p. 727). Measuring the relation of the whole area between the curve and the polygon, where all the 

positive values equaled W and A was the area under the curve; obtaining the following expression 

W A = (∑ errors of fit) (∑ ordinates)⁄ = ∑ s ∑ y⁄⁄ , where s are the differences between 

the observed frequencies and the expected frequencies and y its correspondent ordinate.  

The following data was presented for Pearson in 1895 and corresponds to the number of 

petals in a garden flowers (observed frequency) and calculate the areas and results the theory 

frequency. Further, the comparison between theory and observation is represented by curve and 

histogram in figure 1. 

Figure 1: Theory and observation frequency curve of number of petals in buttercups 
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 Source: Pearson (1895, plate 15) 

Pearson tested his system of continuous probability distribution with a variety of data from 

meteorology, anthropometry, zoology, botany, economy, demography, and mortality, showing that 

his distributions adjusted to the data (HALD, 2007). However, Pearson continued working on an 

objective or reasonable measure of the goodness-of-fit, a problem that he tried to solve in 1900 

with his proposal of the goodness-of-fit-test through the χ2 statistic (as hypothesis testing). Made 

possible to observe to what extent an observed dataset is adjusted to pre-established theoretical 

distribution, through the contrast of the observed frequencies and the expected frequencies. The 

χ2 statistic follows a distribution of the probability of the same name and is given by Pearson type 

III distribution. Pearson (1900), indicated that the objective was "to investigate a criterion of the 

probability on any theory of an observed system of errors, and to apply it to the determination of 

goodness of fit in the case of frequency curves" (p. 157). For this, Pearson starts from the 

expression for the normal density function of an n vector, of variables x, with mean μ = 0 and 

dispersion matrix V. According to Barnard (1992), the current notation is: K exp−
1

2(x −

μ)′V−1(x − μ), where ′ denotes transpose, and K is determined by the condition that density 

integrates to 1. Pearson indicated that: χ2 = x′V−1x; he also established that χ2 equals a 

constant and represented the equation of a generalized ellipsoid on the sample space and that the 

values that χ2 takes must be given to the space range from 0 to ∞, that is to say, P(x > x0) is 

calculated. If the ellipsoid becomes a sphere, then X′s would refer to coordinates, and the chances 

of a system of errors with high frequencies would be denoted by χ. Pearson also made a 

transformation to generalized polar coordinates, where χ could be treated as one of the lines that 

diverge from a common center and obtained: P =
∫ e

χ2

2 χn−1dχ
∞

χ

∫ e
χ2

2 χn−1dχ
∞

0

. In this regard, Pearson indicated 

that: 

This is the measure of the probability of a complex system of n errors occurring with a 
frequency as great or greater than that of the observed system […] and then an 
evaluation of [P] gives us what appears to be a simple fairly reasonable criterion of the 
probability of such an error occurring on a random selection being made. (PEARSON, 
1900, p. 158) 

Then he applied the results to the problem of the fit of an observed to a theoretical 

frequency distribution. If the data are grouped in n + 1, then the observed frequencies of the 

groups would be: m1
′ , m2

′ , m3
′ , … , mn

′ , mn+1
′ ; while the theoretical frequencies supposedly known 

previously are: m1, m2, m3, … , mn, mn+1. As e = m′ − m give the error, then 
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e1, e2, e3, … , en, en+1 = 0 if the observed frequency corresponds to the theoretical.  From this 

and the initial consideration of χ2, it was possible to obtain: χ2 = S (
e2

m
). 

 

 

3.2 The beginnings of the test of independence  

George Udny Yule was looking for a way to measure the association of attributes 

statistically. For example, if there was an association (in the sense of correlation, but for discrete 

variables) between medical conditions like deafness, blindness, and intellectual disability or cases 

of mortality from diseases and the administration of new antitoxins. 

To approach this problem, Yule (1900) starts from the theory of statistical correlation and 

provided examples of correlation of two types, one corresponds to continuous variables (e.g., 

measurement on portions of the body) and the other to discrete variables (e.g., number of children 

in a family). To justify and develop his work of association, he began from theorems of the set 

theory, signaling that "two qualities or attributes, A and B, are defined to be independent if the 

chance of finding them together is the product of the chances of finding either of them separately, 

i.e., if  
(AB)

U
=

(A)

(U)
∙

(B)

(U)
 or (AB)(U) = (A)(B)" (YULE, 1900, p. 270). Furthermore, he indicated 

that this was the only legitimate test of independence or association (understanding association as 

dependence). Yule (1900, p. 272) established that Q =
(AB)(αβ)−(Aβ)(αB)

(AB)(αβ)+(Aβ)(αB)
. Regarding Q, Yule 

(1900, p. 271) indicated that he intended it to "be a measure of the approach of association towards 

complete independence on the one hand and complete association on the other."  

In 1904 Pearson published an article on contingency and its relation to association and 

normal correlation. In this paper, he resumed both, his works on the χ2 statistic from 1900 and 

Yule's work on association developed the same year. In the same work, Pearson (1904) also 

indicated that it is possible to classify the attributes in different groups in a table, thus constituted 

by s columns and t rows, with the universe (frequency of the population) distributed into sub-groups 

corresponding to the s × t compartments. Pearson recognized the problem he was facing when 

there are high numbers of attributes, as in the classification of human eye color into eight types and 

the correlation of these with six classes for hair color. To address this type of problem, he introduces 

the concept of contingency. Furthermore, to make connections with the notions of association and 

normal correlation, he proceeded from probabilistic independence, indicating that "if p be the 
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probability of any event, and q the probability of a second event, then the two events are said to 

be independent, if the probability of the combined event be  p × q" (PEARSON, 1904, p. 5). 

According to Pearson, when we measure contingency, we measure the deviations of the observed 

results of the independent probability, thus, if m1, m2, … , mn correspond to the theoretical system 

ν𝓊ν and m1
′ , m2

′ , … , mn
′  belonging to the observed system n𝓊ν, then χ2 =

S{(n𝓊ν − ν𝓊ν)2 ν𝓊ν⁄ }. In this case, P is a measurement of how far the observed system is, thus 

determining the compatibility or not with the bases of probabilistic independence. To calculate 

probability, he established an n′ = (x − 1)(λ − 1) N − ∅2⁄ , where x is the number of rows and 

λ the number of columns, so, when P is large the chances are in favor of the system originating 

from independent probability. When P is small there is association between the attributes. Thus, 

Pearson recognized 1 − P as an appropriate measure of the contingency, which he called the 

contingency grade.  

Clearly the greater the contingency, the grater must be the amount of association or of 
correlation between the two attributes, for such association or correlation is solely a 
measure from another standpoint of the degree of deviation from independence 
occurrence. (PEARSON, 1904, p. 6) 

Pearson also formulated a function related to the χ2 statistic and called it the mean square 

contingency ∅2 =
χ2

N
, and termed mean contingency to the summation of all the positive 

contingencies ψ = ∑
nuv−vuv

N
. Furthermore, he pointed out that "any functions of either, ∅2 or ψ 

would serve to measure the contingency" (PEARSON, 1904, p. 7). He also expressed ∅2 and ψ 

in terms of association for two attributes established by Yule (1900), in the following way: ∅2 =

 
(ab−cd)2

(a+d)(c+b)(a+c)(d+b)
 and ψ =

2(ab−cd)

N2 . Pearson showed how ∅2 and ψ were closely connected 

with Yule's notion of association. 

 

3.3 Test of homogeneity   

Pearson (1911), took as a base the problem that triggered the treatment of goodness-of-fit 

of 1900, however, indicated that the treatment would be different as, "we have two samples, and a 

priori they may be of the same population or of different populations; we desire to find out what is 

the probability that they are random samples of the same population. This population is one, 

however, of which we have no a priori experience" (p. 250). He indicated examples of the type of 

problems in which it would be desirable to have such information about the samples. Like with the 
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given records of the number of rooms in houses where some of the inhabitants had had cancer or 

tuberculosis. He added that the number of cases of each disease may be very different and that 

the frequency distribution of the number of rooms in the given district may be unknown. 

From this problem, Pearson posed the following question: What is the chance that there is 

a significant difference in the houses with cases of tuberculosis and the ones with cancer cases? 

He started from the premise that the population, from which the two samples are drawn, can be 

given by the class μ1, μ2, μ3, μ4 … μp, μq … μg, being M the total population and where the 

samples would be given by the frequencies in the same classes. He also supposed that the two 

samples were independent, and thus, there would be no correlation between any deviation in any 

frequency of the first and second row. Pearson (1911) indicated that the statistic has the form: 

χ2 = S1
g {

NN′(
fp

N
−

fp
′

N′ )

2

fp+fp
′ }. 

In 1930, George Snedecor presented a statistical technique that he called experimental, 

the statistical test of homogeneity. He indicated that the test was applicable to the type of data 

known as homograde statistics or the statistics of attributes and that it worked with this type of data 

when the elements or individuals in a sample can be classified in categories. While in 1933, 

Snedecor and Irwin in the article 'On the Chi-square test for homogeneity' presented a proposal for 

the test of homogeneity with the χ2 statistic. These authors used the expression χ2 =

100 (∑ sp−p̅ ∑ s)

p̅q̅
, to calculate the statistical value; and to obtain the probability, they used the tables 

of the distribution χ2 with n′ = n + 1, where n was the degrees of freedom, which were obtained 

from n = (c − 1)(r − 1). Snedecor and Irwin (1933), indicated that if the data can be divided 

into subsets, it could be possible to determine the probability that the series of subsamples may 

have been extracted from a homogeneous population. This form of expressing probability is 

different from interpreting probability in favor or against an event and as the mean probability of the 

whole set.  

 

3.4 The refinements of the goodness-of-fit, independence and homogeneity tests  

Greenwood and Yule (1915), observed a discrepancy when they compared the results 

obtained through the test with the χ2 statistic and the test through the difference of proportions and 

its probable error, and added that such discrepancy "is surprising and is not due to the neglect of 

the correlation in errors between the sub-group frequencies" (p. 118). 
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Fisher (1922), stars from the previous difficulty highlighted by Greenwood and Yule and 

indicates that "when we recognize that we should take n′ = 2, the difficulty disappears" (p. 90). 

While for Greenwood and Yule (1915), p =
a

a+b
 and p′ =

c

c+d
, for Fisher (1922) the standard error 

is p = √
(a+c)(b+d)

(a+b+c+d)2(a+b)
 and p′ = √

(a+c)(b+d)

(a+b+c+d)2(c+d)
. So, if x = p′ − p, then we obtain: 

x2

σx
2 =

(bc−ad)2(a+b+c+d)

(a+b)(c+d)(a+c)(b+d)
= χ2 when working with 2 × 2 tables, while the expression χ2 =

∑
((m+x)−m)

2

m
 was used with c × r contingency tables. This last expression about the χ2 statistic 

was used by Fisher in the three tests, goodness-of-fit, independence, and homogeneity. 

Fisher (1922) indicated that, in general, the χ2 test introduced by Pearson is adequate if 

the number of observations is large. Fisher used Elderton's goodness-of-fit tables from 1914 but 

introduced a variation in the form of calculating n′. He indicated that for a contingency table of c 

columns and r rows n′ = (c − 1)(r − 1) + 1. Although Yule, Greenwood, Pearson, and 

Elderton carried out works and approaches on n′ for the χ2 distribution, Fisher is credited with 

introducing the number of degrees of freedom, and defines them, on the one hand, for the 

goodness-of-fit-test as the number of rows minus the number of independent linear restrictions (r) 

in the frequencies (i.e., gl = n − r); on the other hand, for the test of independence for the 

contingency tables with c columns and r rows n′ = (c − 1)(r − 1) + 1. 

In 1925, Fisher provided the means to apply statistical tests with precision, defining the 

contrasts of signification where there was only one hypothesis -the null hypothesis-, which specified 

the numerical value of the parameter. The critical ideas of Fisher's experiments, developed in the 

agriculture field, were the randomization and the significance. In 1934, Fisher provided a table for 

the χ2 distribution, where it was possible to find the value of the χ2 statistic according to the level 

of significance and degrees of freedom of the test, with the value of the χ2 statistic found in the 

table, the zones of rejection and acceptance are established.  

Wijayatunga (2016) performs an interpretation of the chi-square statistic, when it is used in 

the independence test for two discrete random variables, with conditional probability, arguing that 

this test uses a certain measure of dependence. He indicates that X take values i = 1, … , α and 

Y take values j = 1, … , β. The joint probability of X = i and Y = j as pij, the marginal probability 

of X = i and Y = i as pi. and p.j respectively. And, the conditional probability of X = i given by 

Y = j is pi|j = pij/p.j. Then, χ2 = ∑ n 
(pij−pi.p.j)

2

pi.p.j
i,j = n {∑  pij

pij−pi.p.j

pi.p.j
i,j } =
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n {∑  pij
pi|j−pi.

pi.
i,j } = n {∑  pij

pj|i−p.j

p.j
i,j } = nE{A}, where A is a random variable with probability 

pij and E denotes the expectation. Also, 
pi|j−pi.

pi.
 may refer to the degree of dependence between 

X and Y. While E{A} can be interpreted as a measure of degree of dependence between X and 

Y. 

Regarding the homogeneity and independence tests with the χ2 statistic, Fisher (1934) 

pointed out that both tests are mathematically identical, that the "χ2 index of dispersion would then 

be equivalent to the χ2 obtained from the contingency table" (p. 94) and, also, that the homogeneity 

test might be applied to samples of equal or different sizes. Additionally, Yates (1934), proposed a 

continuity correction factor for the χ2 statistic, in the context of the test of independence. With the 

correction for continuity, it was possible to use the test of independence with small numbers. Yates 

(1934, p. 217) indicates that "the accuracy of this approximation depends on the numbers in the 

various cells, and in practice, it has been customary to regard χ2 as sufficiently accurate if no cell 

has an expectancy of less than 5". Thus, he focused his work on the applicability of the tests to 

contingency tables with low expectations. 

According to Yates (1934), the discrepancies are because χ is a continuous distribution, 

while the distribution it is attempting to approximate is discontinuous. When the values of χ2 are 

calculated for deviations, half a unit less than the right deviations, it is denominated correction for 

continuity and the resultant value of χ is χ′ and with a P = (χ′). Namely, this correction for 

continuity consists in subtracting 0.5 to the positive deviations and adding 0.5 to the negative 

deviations. He starts from χ2 = ∑
(a×d−b×c)2 N

n×n′(N−n)(N−n′)
 to establish that the statistic with correction is 

χc
2 = ∑

((a−
1

2
)(d−

1

2
)−(b+

1

2
)(c+

1

2
))

2

 N

n×n′(N−n)(N−n′)
, when working with 2 × 2 contingency tables.  

Yates (1934), examined the discrepancies with the χ2 statistic and its associated 

probability, after the correction for continuity in contingency tables that involve small numbers with 

one or more degrees of freedom. The application of the continuity correction factor was expanded 

to the goodness-of-fit and homogeneity tests.   

 

4 Meanings of the Chi-square statistic 

In the present section, the onto-semiotic configurations identified with the historical analysis 

of the χ2 statistic will be described. The segment initially addresses the three main problem areas 
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that allowed the emergence, development, and generalization of this mathematical object. That is 

to say, the goodness-of-fit-test, the test of independence, and the test of homogeneity. These 

problem areas are closely related to the problem: χ2 distribution. The holistic meaning of the χ2 

statistic is comprised of twelve partial meanings. To determine each partial meaning, an onto-

semiotic configuration has been described from the mathematical practice used to solve the 

previously mentioned problem areas.  

4.1 Problem area 1: goodness-of-fit-test  

In the historical development of the goodness-of-fit test with the χ2 statistic, four partial 

meanings were identified. The first one corresponds to an intuitive goodness-of-fit-test since the χ2 

statistic was still not explicitly used in the practices. 

 

4.1.1 Partial meaning 1 (PM1): Galton’s graphic method 

Galton was looking for a way to establish if it was appropriate to work an observed dataset 

under the conditions of the normal distribution. To solve this type of problem, in 1875, he developed 

the method of intercomparison, and in 1885 he presented the graphic method. To explain the 

graphic method, Galton worked with a dataset observed in 775 women. The data related to the 

height of female adults aged 23 to 50. To prove that the data followed a normal distribution, the 

graphic method was applied. 

We can highlight from Galton's graphic method, the use of some linguistic elements like 

natural language in the formulation and interpretation of results, tabular representation to show the 

observed frequencies of height (sitting) of the 775 females, and the use of graphic representation 

(ogive) under the method of intercomparison and to show the deviates distribution regarding the 

50° percentile. Furthermore, concepts/definitions were identified in the mathematical practice 

including the introduction of the ogive, quartiles, percentiles, modulus, mean error, and, notably, 

the probable error as a measure of the variability of the observed series; as well as the deviates 

which considered the new ordinates of the graph and represented the differences between each 

observed value and the 𝑚 value of all the observed values (also denominated divergencies or 

errors). 

It was also possible to identify properties/propositions as the law of error, normal 

distribution, 𝑚 in 1 

2
 or at 0°, 𝑝 in 1 

4
 or in −25°, 𝑞 in 3 

4
 or at 25°, probable error, and it is highlighted 

that if the series is symmetric, then 𝑞 − 𝑚 = 𝑚 − 𝑝. The procedures of this configuration are the 
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graphing of the ogive of cumulative frequencies and the graphing of the distribution of deviations 

between each observed value and 𝑚. From these observed properties that helped to build the 

aforementioned graphics, the arguments are focused on establishing if the observed datasets of 

775 females follow a normal distribution. 

 

4.1.2 Partial meaning 2 (PM2): Goodness-of-fit test with Pearson’s 𝝌𝟐 statistic 

In 1900, Pearson tried to solve the problem of an objective or reasonable measurement of 

the goodness-of-fit with his proposal of the goodness-of-fit-test through the 𝜒2 statistic. To illustrate 

the usefulness and the way of applying the goodness-of-fit-test, Pearson presented some 

prototype-problems. For example, he resumed the data about Merriman's 1000 shots. Merriman 

participated in the Spanish Civil War, hence his interest for analyzing deviations of 1000 shots 

during military training, he used the Method of Least Squares and indicated that the data derived 

from a probable system of deviations from the normal curve. However, Pearson (1900), resumes 

this problem to prove if the data of the 1000 shots follow a normal distribution, as suggested by 

Professor Merriman, through the 𝜒2 goodness-of-fit-test. 

The linguistic elements used to develop the goodness-of-fit-test are natural language, in 

the formulation and interpretation of results, tabular representation to show the frequency 

distributions (theoretical and observed), as well as for calculating error and squared error between 

the theoretical frequency. Additionally, symbolic representation is used in the table and in the case 

of calculating to obtain the probability through the formula. The theoretical and observed 

frequencies shown through the tabular representation constitute some concepts/definitions of this 

configuration, like the experiments, experiments tests, probability and the 𝜒2 statistic, which is a 

measure of the divergence between the theoretical frequencies distribution and the observed ones.  

Some properties/propositions observed in the tabular representation were the error (i.e., 

the differences between the observed frequency (𝑚′) and the theoretical frequency (𝑚) under 

the expression 𝑒 = 𝑚′ − 𝑚); the 𝜒2 probability distribution as an asymptotic distribution of the 

𝜒2 statistic, the number of errors 𝑛′, the formulas for the calculation of probability under 𝜒 and 𝑛′, 

and the identified elements resumed in the PM1, as the law of error and normal distribution. The 

arguments are provided from the results of the test and in terms of the context of the problem, are 

focused on finding the probability of occurrence of the deviations system of the set of observed 

frequencies respecting the expected frequencies or theoretical of particular distribution (in this case 

of the normal distribution), for which it is necessary to calculate the 𝜒2 statistical value under the 
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following expression which results in a property/proposition 𝜒2 = ∑
(𝑚′−𝑚)

2

𝑚
. Some procedures 

used for this are the calculation of error and squared error between the expected frequency, which 

are also seen in the tabular representation. 

4.1.3 Partial meaning 3 (PM3): Goodness-of-fit-test with Fisher’s degrees of freedom 

The problem that Fisher and other statisticians of that time addressed refers to the degrees 

of freedom for calculating the probability associated with the 𝜒2 statistical value in the 𝜒2 

distribution, in the context of the goodness-of-fit and independence tests. In 1925 Fisher published 

some situations/problems about the goodness-of-fit-test application with the 𝜒2 statistic and with 

𝑛′ = 𝑘 + 1, where 𝑘 indicates the number of degrees of freedom. Notably, a problem where 

Fisher made a comparison with the expectation of Mendelian class frequencies in the generation 

of a hybrid (F1) of four classes in the ratio 9 ∶ 3 ∶ 3 ∶ 1 is resumed. He introduces the null 

hypothesis or the researcher hypothesis: the factors segregate independently, and the four classes 

of descendants are equally viable.  

To make the goodness-of-fit-test linguistic elements like natural language were used, in 

the same sense that in the PM2, tabular representation to show the frequency distributions 

(expected and observed) and the value of the statistic. Symbolic representation is used in the 

tables, in the formulation of the problem and conclusion. In the mathematical practice that Fisher 

extended to solve this problem, concepts/definitions of the PM2 were identified, e.g., experiment, 

test, observed frequency, expected frequency, probability. It was also possible to identify the 

introduction of the degrees of freedom, in this context, as the number of rows minus the number of 

independent linear restrictions in the frequencies; this concept was related to a fundamental 

property/proposition in this configuration, which is 𝑘 = 𝑛 − 𝑟. This property generated a change 

in 𝑛′, which is now known as the number of degrees of freedom plus one.  

To solve the problem, procedures like calculating the value of the 𝜒2 statistic, establishing 

the number of degrees of freedom and 𝑛′ to obtain the probability of the Elderton's tables of the 

𝜒2 distribution were used. It is argumented using the obtained probability like the one of occurrence 

having a dataset with a system of errors of such broad deviations of particular theoretical 

distribution; additionally, if prior the test, a limit was established as significant deviation (e.g., 𝑃 =

0.05), the probability obtained from the tables was compared with such limit.  
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4.1.4 Partial meaning 4 (PM4): Goodness-of-fit-test with Yates' continuity correction factor 

The problem that Yates addressed refers to the correction for continuity that the 𝜒2 statistic 

requires when working with small numbers. He indicated that the discrepancy becomes visible 

when working with small numbers because 𝜒 is a continuous distribution, while the distribution it is 

attempting to approximate is discrete. To illustrate Yates' method in a goodness-of-fit-test when 

working with frequencies below five, a Pearson (1900) situation/problem is resumed, which 

revolves around the number of petals in a flower denominated ranunculus, the expected 

distributions were calculated under the skewed curve 𝑦 = 0.211225𝑥−0.322(7.3253 −

𝑥)3.142. 

Just as in the previous partial meanings it was possible to identify linguistic elements like 

natural language, tabular representation and the use of symbolic representation to indicate the 

value of the 𝜒𝑐
2 statistic, degrees of freedom, and probability. Furthermore, concepts/definitions 

were resumed from PM2, such as experiment, test, observed frequency and expected frequency, 

probability, correction for continuity, and degrees of freedom from PM3. The correction for 

continuity factor was introduced as an adjustment made to the 𝜒2 statistic when working with small 

numbers, because it is intended to approximate a discontinuous distribution through a continuous 

distribution. So, this concept impacts the statistic directly generating the property/proposition 𝜒𝑐
2 =

∑
(|𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦|−0.5)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
. Other properties/propositions of this 

configuration are in accordance with the established in other partial meanings, particularly, the law 

of error from PM1, the error and 𝜒2 probability distribution from PM2, and the degrees of freedom 

from PM3.  

The procedures used to carry out the 𝜒𝑐
2 goodness-of-fit-test with correction for continuity 

factor are: (1) calculating the value of the 𝜒𝑐
2 statistic; (2) obtaining 𝑛′ (in the sense of PM3); and 

(3) looking for the probability value in the 𝜒2 distribution table (with 𝜒𝑐
2 and 𝑛′). The arguments 

developed in accordance with such probability value identified in the tables, indicating if the 

probability of occurrence having a dataset corresponds to particular theoretical distribution, for 

example, if having  𝜒𝑐
2 = 2.587262 and 𝑃 = .858576, it can be said that the skewed curve 

𝑦 = 0.211225𝑥−0.322(7.3253 − 𝑥)3.142 proposed by Pearson, is a proper adjustment for the 

distribution of the ranunculus petals. 
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4.2 Problem area 2: test of independence  

Four partial meanings were identified in the evolution of the test of independence with the 

𝜒2 statistic. We will refer to them continuing with the numbering of the previous meanings. Thus, 

the partial meaning five can be considered as an intuitive test of independence, since the onto-

semiotic configuration highlighted the notion of association, which subsequent generalization led 

to the test of independence with the 𝜒2 statistic. 

4.2.1 Partial meaning 5 (PM5): The beginnings of the test of independence through the 

association coefficient 𝑸 

In 1900, Yule was searching for a way to prove an association between two discrete 

variables, just like the association for the continuous variables was measured. To prove his 

association coefficient 𝑄, he used a situation/problem where he resumed data from the publication 

'Vaccination and Small-Pox Statistics' by Mr. Noel A. Humphrey. He showed a table with the small-

pox attack rates in houses that at the moment of the data collection were invaded by small-pox, of 

persons under and over ten years of age in Sheffield, Warrington, Dewsbury, Leicester, and 

Gloucester. English cities in which small-pox epidemics have recently occurred. The objective was 

to show if there is an association between the unvaccinated and the attack in the infected houses 

of persons under and over such age. 

The linguistic elements identified are natural language to formulate the problem, to explain 

how the test of association is applied and to determine if there is or not association at the time of 

concluding; tabular representation to provide the small-pox attack rate, of persons under and over 

ten years of age, in houses affected in towns in which small-pox epidemics have recently occurred; 

and to indicate the association coefficients. Symbolic representation was also identified in the 

calculation of the association coefficient. 

Regarding the concepts/definitions, some of the most relevant were the variable, qualities 

or attributes, frequency, sets in probability, correlation coefficient and highlights the one of 

association (in terms of correlation for continuous variables) and the association coefficient as a 

measure that approaches the association, towards complete independence on the one hand, and 

complete association on the other. This coefficient is also understood as a symmetrical function of 

the attributes, ranging between ±1 and zero when the attributes are unassociated. The association 

coefficient 𝑄 =
(𝐴𝐵)(𝛼𝛽)−(𝐴𝛽)(𝛼𝐵)

(𝐴𝐵)(𝛼𝛽)+(𝐴𝛽)(𝛼𝐵)
, constitutes a property/proposition. It is also highlighted the 

property/proposition that initially gives foundation to Yule's elaborations about the association 

coefficient, augmenting that two qualities or attributes, A and B, are defined as independent if the 
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chance of finding them together is the product of the chances of finding them separately too, for 

example, if 
(𝐴𝐵)

𝑈
=

(𝐴)

(𝑈)
∙

(𝐵)

(𝑈)
. Other properties concerning the cross-products were identified when 

the association coefficient should be −1, 0, +1. 

The procedures used to find the association measure between the unvaccinated and the 

attacks in the infected houses of persons under and over the age of ten, through the association 

coefficient 𝑄, are: (1) forming the 2 × 2 table of the attributes with which it concerns establishing 

if there is an association, (2) calculating the association coefficient 𝑄. With the results, it was 

possible to develop arguments concerning the association coefficient value by age group and about 

the obtained value of the association coefficients of the different towns.  

 

4.2.2 Partial meaning 6 (PM6): Test of independence through contingency with the 𝝌𝟐 

statistic and the contingency coefficients 

In 1904, Pearson proposed a way to measure the contingency that generalized the one of 

association of Yule (1900). The situation/problem posed by Pearson (1904), was that of the small-

pox epidemic of 1890, intending to illustrate with a numerical example his proposal and viability 

and effectiveness of this over others like Yule's association coefficient.  

Regarding the linguistic elements, the ones identified were natural language in the 

formulation of the problem and the interpretation of results; tabular representation, particularly a 

2 × 2 contingency table in which the observed frequencies were shown. Symbolic representation 

is also used when showing the results of the calculations of mean square contingency, mean 

contingency, 𝜒2 statistic and the association coefficient 𝑄. Concerning these new terms mentioned 

in the symbolic representation introduced by Pearson, it is necessary to indicate that they are 

associated with a series of concepts/definitions, properties/propositions, or procedures to prove 

statistical independence. For example, the concept/definition of contingency generalizes the notion 

of association of two attributes developed by Yule, and now it is possible to classify individuals not 

only in two groups but also into as many groups with exclusive attributes as we please and where 

the order of the sub-groups is of no significance. To measure contingency is necessary to resort to 

the property/proposition contingency grade, 1 − 𝑃, which indicates that the higher contingency, 

the higher amount of association between two attributes. This measurement is made through the 

following procedures: (1) from the values of the contingency table we can find the values of the 

mean square contingency ∅2 =
(𝑎𝑏−𝑐𝑑)2

(𝑎+𝑑)(𝑐+𝑏)(𝑎+𝑐)(𝑑+𝑏)
, 𝜒2 =

(𝑏𝑐−𝑎𝑑)2(𝑎+𝑏+𝑐+𝑑)

(𝑎+𝑏)(𝑐+𝑑)(𝑎+𝑐)(𝑏+𝑑)
 and mean 
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contingency 𝜓 =
2(𝑎𝑏−𝑐𝑑)

𝑁2 ; (2) from the values of ∅2, 𝜒2 and 𝜓, we can find 𝐶1, 𝐶2, 𝑄 and the 

contingency grade (where 𝑃 is found with the help of the Elderton's tables for goodness-of-fit). 

Finally, the arguments are made concerning the contingency grade that indicates the deviation of 

the probabilistic independence that the attributes have. For example, "a case of small-pox and 

presence or absence of cicatrix is such that the above table could only arise 718 times in 1040 

cases if the two events were absolutely independent" (PEARSON, 1904, p. 22). Besides, the 

contingency coefficients can indicate the degree of association between the attributes.  

Other examples of concepts/definitions are the following: (a) table of contingency (a term 

introduced by Pearson, 1904), formed by 𝑠 columns and 𝑡 rows with a total frequency 𝑁 distributed 

in sub-groups corresponding to these 𝑠 × 𝑡 compartments; (b) probability, as a measure of how 

far the observed system is or is not compatible with a basis of independent probability. Other 

concepts/definitions identified are variable, attributes, observed frequency, expected frequency, 

mean contingency, association, and correlation. Similarly, other examples of 

properties/propositions are probabilistic independence; the 𝜒2 statistic for 𝑠 × 𝑡 and 2 × 2 

contingency tables; mean square contingency; mean contingency; the contingency coefficients; 

and highlights 𝑛′ = (𝑥 − 1)(𝜆 − 1) 𝑁 − ∅2⁄ , where 𝑥 are the number of rows and 𝜆 the 

number of columns used for the calculation or search in tables of the probability associated with 

the 𝜒2 statistic. 

 

4.2.3 Partial meaning 7 (PM7): Test of independence with degrees of freedom 

According to Fisher (1922), for the case of the test of independence with 2 × 2 

contingency tables, we should take 𝑛′ = 2 instead of 𝑛′ = 4, and for the calculation of probability, 

Elderton's tables can be applied. Fisher resumed a situation/problem with the data used by 

Greenwood and Yule in 1915, on typhoid, to measure the association between the attacked 

persons and the vaccine; however, Fisher made the test with the notion of degrees of freedom 

introduced in 1922.  

In Fisher's test of independence, he used linguistic elements such as natural language and 

tabular representation in the same sense as in PM6. He also used symbolic representation when 

calculating to obtain the probability through the formula and the value of the statistic. Regarding 

concepts/definitions, the ones identified were: observed frequency, in the same sense as PM2; 

variate and probability, following PM6; theoretical frequency, as the number of times that according 

to a distribution under the assumption of independence a value is expected to occur in a dataset. 
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Other examples are marginal distribution, which gives one-dimensional information about each 

classification and says anything about the association between the two variables; and association 

as a divergence of independence. It was also possible to identify the introduction of degrees of 

freedom as the number of free parameters minus the number of parameters to estimate. Likewise, 

this concept was related to one of the critical properties/propositions in this configuration, 𝑘 =

𝑐𝑟 − 1 − (𝑐 − 1) − (𝑟 − 1) = (𝑐 − 1)(𝑟 − 1), where 𝑐 indicates the number of columns and 

𝑟 the number of rows. The introduction of this property to the test of independence generated a 

change in 𝑛′, which is now understood as 𝑛′ = (𝑐 − 1)(𝑟 − 1) + 1. 

The procedures identified are: (1) calculating the 𝜒2 statistic through the formula proposed 

by Fisher (1922), for a 2 × 2 contingency table, 𝜒2 =
(𝑏𝑐−𝑎𝑑)2(𝑎+𝑏+𝑐+𝑑)

(𝑎+𝑏)(𝑐+𝑑)(𝑎+𝑐)(𝑏+𝑑)
, in case of working 

with a table 𝑐 × 𝑟 it is necessary to obtain the expected frequencies under the assumption of 

probabilistic independence from observed frequencies through the observed marginal totals; (2) 

obtaining 𝑛′ ; and (3) looking for the probability value in the table of the 𝜒2 distribution or in the 

table of critical values of Fisher.  

The arguments used by Fisher consisted in the probability associated with the 𝜒2 statistic 

and the comparison with the predetermined limit as significant deviation 𝑃 = 0.05. In his example, 

since 𝜒2 = 56.234, Fisher indicated that the observations were opposed to the hypothesis of 

independence. 

 

4.2.4 Partial meaning 8 (PM8): Test of independence with Yates' continuity correction factor 

In this partial meaning, the problem of PM5 is resumed, which refers to Yates' correction 

for continuity that the 𝜒2 statistic requires when working with small numbers. This continuity 

correction emerges in the context of the test of independence in 1934. Yates wanted to test how 

the correction that he proposed affects the work with frequencies under five. For this, he resumed 

the situation/problem and the data of Dr. Milo Hellman that referred to malocclusion, which are 

alterations in the position of infant's teeth, and how the baby was fed. Hellman concludes that 

bottle-feeding is one of the factors causing malocclusion. 

Regarding the linguistic elements that Yates used, it was possible to identify natural 

language and tabular representation in the same sense as in PM6, also the probability of the 

number of breastfed infants is shown in the tabular representation. Symbolic representation is also 

used in the calculation to obtain the statistical value, the statistic with correction for continuity, and 
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the probability distribution of the number of breastfed children. Concepts/definitions from other 

partial meanings are resumed, for example, variable from PM6; observed frequency, expected 

frequency, frequency distribution, marginal distribution, and probability, from PM7; while the 

correction for continuity factor is understood in the same sense as in PM4. Concerning the 

concept/definition of independence between two variables, indicates that there is no relation 

(association) between the variables under study; thus, such variables have a distribution under 

probabilistic independence.  

Properties/propositions from PM7 are also resumed, particularly, the degrees of freedom 

and 𝑛′. The statistic with correction for continuity factor is introduced under the expression 𝜒𝑐
2 =

∑
((𝑎−

1

2
)(𝑑−

1

2
)−(𝑏+

1

2
)(𝑐+

1

2
))

2

 𝑁

𝑛×𝑛′(𝑁−𝑛)(𝑁−𝑛′)
, for 2 × 2 contingency tables. This last property corresponds to the 

first action of a series that conform the procedures to find the probability of occurrence of the event 

when the 𝜒𝑐
2 statistic is used to test independence between two variables of the same population. 

The probability of occurrence of the event is used to propose the arguments. Yates also indicated 

that it was possible to argue about the value of the statistic and the critical value of the distribution.  

 

4.3 Problem area 3: test of homogeneity 

In this section, we will describe the characteristics of the four partial meanings identified in 

the historical evolution of the test of homogeneity with the 𝜒2 statistic. 

 

4.3.1 Partial meaning 9 (PM9): The beginnings of the test of homogeneity with the 𝝌𝟐 

statistic 

In 1911, Pearson wanted to find out the probability that two samples known a priori may 

be from the same population, however not having a priori knowledge of the population. To show 

how the test of homogeneity with the 𝜒2 statistic work, Pearson resumed a situation/problem with 

data from Dr. Macdonald's studies, with which he pretended to determine if there was a selective 

disease. Mainly, he wondered whether hair color exercises a differential selection regarding the 

incidence of scarlet fever and measles. He applied the test of hair color with two samples; the first 

sample corresponds to persons with scarlet fever and the second to persons with measles. 

The linguistic elements that Pearson used to make the test of homogeneity are natural 

language and tabular representation in the same sense as in PM6, symbolic representation is also 
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used in the table of contingency and in the calculation to obtain the value of the statistic and when 

referring to probability. Concerning the concepts/definitions introduced on this partial meaning, we 

have independent samples, which are samples selected randomly so that its data do not depend 

on other observations; probability, which in this context is understood as a measure of occurrence 

that both are random samples of the same population. Likewise, concepts/definitions from PM6 are 

resumed, for example, variable, attribute, or class, and observed frequency. 

One of the properties/propositions from which Pearson substantiated the use of the 𝜒2 

statistic for the test of homogeneity refers to whether the samples are independent then 𝜎𝑝
2 =

𝑛2 (
Σ𝑝

2

𝑁2 +
Σ𝑝

2′

𝑁′2
) , 𝜎𝑝𝜎𝑞𝑟𝑝𝑞 = 𝑛2 (

Σ𝑝Σ𝑞R𝑝𝑞

𝑁2 +
Σ𝑝

′ Σ𝑞
′ R𝑝𝑞

′

𝑁′2 ), being Σ𝑝, Σ𝑞 , Σ𝑝
′ , Σ𝑞

′  the standard 

deviations of the frequencies of the 𝑝𝑡ℎ, 𝑞𝑡ℎ frequencies of the two samples and R𝑝𝑞, R𝑝𝑞
′  the 

correlations of the same frequencies. Additionally, if the frequencies belong to random samples of 

the same population, we have 
�̅�𝑝

𝑁
=

𝑓𝑝
′

𝑁′ =
𝜇𝑝

𝑀
,

�̅�𝑞

𝑁
=

𝑓𝑞
′

𝑁′ =
𝜇𝑞

𝑀
. As it was mentioned, the previous 

properties/propositions substantiated the following, 𝜒2 = 𝑆1
𝑔 {

𝑁𝑁′(
𝑓𝑝

𝑁
−

𝑓𝑝
′

𝑁′ )

2

𝑓𝑝+𝑓𝑝
′ }. Calculating the 

value of this property also constitutes the first action of the procedures to find the probability that 

the two samples derive from the same population, to find this probability he was assisted by 

Elderton's tables of goodness-of-fit (𝜒2 and 𝑛′), and is precisely this probability the one used to 

make the arguments to justify and return to the context of the problem addressed. Pearson's 

arguments about the test of homogeneity indicated that: "The odds are more than 33,000 to 1 

against the occurrence of two such divergent samples of hair color if they were random samples 

from the same population" (PEARSON, 1911, p. 252). 

 

4.3.2 Partial meaning 10 (PM10): Snedecor's test of homogeneity 

Snedecor and Irwin (1933), presented a proposal for the homogeneity test that would apply 

to the results of experiments, where the frequencies of the observations that arise from different 

subsets are unequal. The type of situations/problems with which they worked referred to laboratory 

experiments, where the frequencies of the observations derived from different unequal subsets, for 

example, the mortality in epidemics induced to laboratory animals and controlled infestations in 

croplands. 
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The linguistic elements characterized were natural language, in the same sense as in PM6, 

and tabular representation to provide the number of apples of each sub-sample, number of injured 

apples, and percentage of the sub-sample to which the injured apples correspond for both 

fumigation methods. Symbolic representation is also used to present the values of the statistic, the 

probability in the table of contingency, and in the conclusions. The concepts/definitions are variable 

resumed from PM6; observed frequency from PM7; and population and sample from PM9. 

However, in this case, the sample is composed of the combination of diverse sub-samples taken 

from different places. Two relevant concepts/definitions in this configuration are probability and 

homogeneity. The probability is understood as a measure of occurrence that the series of sub-

samples have been extracted from a homogeneous population, in the sense that the probability of 

the event is uniform throughout the experimental material. In contrast, homogeneity refers to a 

measure to see if it is possible that the samples come from a homogeneous population. 

Regarding the essential properties/propositions for this test, we have the degrees of 

freedom 𝑛 = (𝑐 − 1)(𝑟 − 1), the probability of the attribute in each sub-sample 𝑝 =
100𝑠

𝑛
 %, 

the average probability for the whole sample �̅� =
100 ∑ 𝑠

∑ 𝑛
%, the average probability of the 

complement of the attribute �̅� = 100 − �̅� %, and the statistic 𝜒2 =
100 (∑ 𝑠𝑝−�̅� ∑ 𝑠)

�̅��̅�
, in which 

∑ 𝑠𝑝 is the sum of the products of the pair of the frequency of the attribute in each sub-sample.  

The procedures identified are: (1) using the property/proposition 𝜒2 =
100 (∑ 𝑠𝑝−�̅� ∑ 𝑠)

�̅��̅�
; (2) 

establishing the number of degrees of freedom; and (3) looking for the value of the probability in 

the table of the 𝜒2 distribution for the value of 𝜒2 and 𝑛. With this probability obtained from the 

tables, it is possible to make the arguments to justify the results of the test of homogeneity of the 

population.  

 

4.3.3 Partial meaning 11 (PM11): Test of homogeneity with the degrees of freedom and 

Fisher's 𝝌𝟐 distribution table 

According to Fisher (1934), the tests of homogeneity and independence with the 𝜒2 

statistic are mathematically identical; hence it is also resumed from PM7 the fact that with 2 × 2 

contingency tables we should take 𝑛′ = 2 instead of 𝑛′ = 4. Fisher (1934), showed how the test 

of homogeneity works with the 𝜒2 statistic, for which he resumes a problem with samples of 

different sizes about data of crustaceans that he had previously analyzed at the request of Huxley. 
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The test aimed to study the homogeneity of different families for the black and red eyes proportion. 

Regarding the linguistic elements, the ones used were natural language, in the same sense 

as in PM6, tabular representation to show the eye color frequency per family. Symbolic 

representation was also used in the calculation to obtain the value of the statistic and the probability. 

The concepts/definitions are resumed from different partial meanings, for example, variable from 

PM6; observed and expected frequency, frequency distribution and marginal distribution from PM7; 

and sample, probability, and homogeneity from PM9. Concerning the properties/propositions, the 

ones introduces are: Expected frequency as 𝑒𝑖𝑗 =
𝑛𝑖×𝑛𝑗

𝑛
, degrees of freedom 𝑛 = (𝑐 − 1)(𝑟 −

1), and when 𝑛 > 30 the expression used is (√2𝜒2 − √2𝑛 − 1), if the value of the expression 

is over two, the value of 𝜒2 is not following the expectations. Regarding the 𝜒2 statistic, it is 

understood in the same sense as in PM7.  

The procedures identified are: (1) calculating the statistic through 𝜒2 = ∑
((𝑚+𝑥)−𝑚)

2

𝑚
, to 

which is necessary to obtain the expected frequencies under the assumption of independence from 

observed frequencies through the marginal totals observed 𝑒𝑖𝑗 =
𝑛𝑖×𝑛𝑗

𝑛
; (2) obtaining the number 

of degrees of freedom 𝑛; and (3) using the expression √2𝜒2 − √2𝑛 − 1, since 𝑛 > 30, and it 

is not found within the tabulated values. The arguments focused on the value of the expression 

√2𝜒2 − √2𝑛 − 1, which is below two and indicated that "the series is therefore not significantly 

heterogeneous; effectively all the families agree and confirm each other in indicating the black-red 

ratio observed in the total" (FISHER, 1934, p. 95). 

 

4.3.4 Partial meaning 12 (PM12): Test of homogeneity with Yates' continuity correction factor 

To show how the test of homogeneity works with the correction for continuity factor to the 

𝜒2 statistic, we resume the problem presented by Pearson (1911) about the hair color of two 

samples. The first sample corresponds to persons with scarlet fever and the second sample to 

persons with measles.  

Among the linguistic elements in this configuration, we have natural language, in the same 

sense as in PM6, and tabular representation to show the frequencies of hair color of two samples 

(just as in PM11). Likewise, symbolic representation is also used as in PM11. Concerning the 

concepts/definition and the properties/proposition, they are resumed from different partial 

meanings, for example, in concepts/definitions the correction for continuity factor is resumed from 
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PM4; variable from PM6; observed and expected frequency, frequency and marginal distribution, 

from PM7; and sample, probability, and homogeneity from PM9. Concerning properties/proposition, 

the degrees of freedom and expected frequency are resumed from PM11. Moreover, the 𝜒𝑐
2 

statistic is understood as in PM8.  

The procedures identified are: (1) calculating the expected frequencies and the value of 

the 𝜒𝑐
2 statistic; (2) establishing the degrees of freedom; and (3) looking for the value of the 

probability in 𝜒2 distribution tables. While the arguments revolved around the probability of 

occurrence that both samples correspond to the same population. For example, for 𝜒2 = 26 and 

𝑛 = 4, the 𝜒2 distribution table shows 𝑃 = 0.000,086039; hence, the probabilities are around 

11,628 to 1 against the emergence of two samples of hair color that diverge, if they were random 

samples from the same population. 

 

4.4 Problem area 4: Chi-square distribution 

Karl Pearson was the first obtaining the 𝜒2 distribution as the asymptotic distribution of the 

𝜒2 statistic (HEYDE; SENETA, 1977). Pearson (1900), made that connection when he was working 

the problem of goodness-of-fit for a frequency curve. Earlier, the evolution of the 𝜒2 statistic to 

solve diverse types of problems, and the application of the 𝜒2 distribution to solve such problems 

has been described and characterized. Within the variations of the distribution application, it has 

been addressed what is recognize as degrees of freedom and its importance to determine the 

probability and the critical regions in the 𝜒2 distribution. Furthermore, it is also recognized the 

importance that the 𝜒2 distribution tables had and that they facilitated the use of the contrast tests 

of the 𝜒2 statistic and it was Pearson (1900) who provided the first version of them, in which it was 

possible to find the probability with (𝜒, 𝑛′), establishing the formulas to calculate the probability in 

the distribution to any 𝑛′. Subsequently, Elderton (Pearson, 1914) also published an extension of 

such tables for the probability (𝜒2, 𝑛′ ). Fisher (1934), also published tables for the distribution with 

(𝑛, 𝑃), where 𝜒2 is obtained to establish the regions of acceptance and rejection, and established 

an expression for the calculation of the critical value of 𝜒2 in the distribution for the cases of 𝑛 >

30. 

Pearson (1900), renamed his Type III curve as '𝜒2 distribution'; at that moment, he does 

not refer to Helmert, who had been working with such distribution, and it is not until 1931 that 

Pearson recognizes the precedent of the distribution. In the following paragraphs, some of the 

precedents of the distribution are presented.  
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According to Lancaster (1966), Pearson's 𝜒2 distribution can be considered as the 

culmination of Laplace's work on least squares. Laplace worked with the gamma distribution in the 

context of the theory of errors, being the 𝜒2 distribution a case of the gamma distribution. Laplace 

provided with his work the necessary techniques for the subsequent Bienaymé's work of 1838, 

where he developed the distribution in a linear form in the success and failures of the binomial as 

preliminary to an extension of the multinomial theory; and in 1952, he obtained the 𝜒2 distribution 

as an asymptotic result without the assumption of normality (LANCASTER, 1966). Lancaster also 

indicated that in 1844 Ellis worked in a problem suggested by Isaac Newton on reigns length, from 

which he provided a method to determine the distribution of the sum of 𝑛 independently distributed 

random variables by the use of Laplace's transforms. 

According to Lancaster (1966) and Hald (2007), in 1875 Helmert provided a frequency 

distribution of the sum of squares ∑ 𝜀𝑖
2 = 𝑛𝜎2, where 𝜀𝑖 are mutually independent normal 

variables, with an expected value equal to zero, where the expression is 𝑓 (
𝑣

2
) =

1

Γ(
𝑛

2
)

(
𝑣

2
)

𝑛

2
−1

exp (−
𝑣

2
), then 𝑣 has a 𝜒2 distribution with 𝑛 degrees of freedom. In 1876, Helmert 

replaced 𝑛 for 𝑛 − 1. Helmert (1876), considered joint distribution of the 𝑧𝑖 and applied maximum 

likelihood and obtained �̂�2 ∑ 𝑧1
2 𝑛⁄ , then obtained the joint distribution of the 𝑛 − 1 differences 

𝑢𝑗 = 𝑥𝑗 − �̅�. He also made a transformation to ∑ (𝑥 − �̅�)2 𝜎2⁄  for the 𝑥′𝑠 and the 𝑣′𝑠, which 

is known as Helmert transformation, which showed that ∑ (𝑥𝑖 − �̅�)2 𝜎2⁄𝑛
1 = ∑ 𝑣𝑖

2 𝜎2⁄𝑛−1
1  is 

distributed as 𝜒𝑛−1
2 , where 𝑥𝑖 = 𝜇 + 𝑧𝑖. 

 

5 Incidence of partial meanings identified for the statistical education research 

In the present section, we describe the connections among partial meanings identified in 

this article, for the 𝜒2 statistic, and the developments of the statistical education research 

concerning IIR and FIR, the use of statistical software, and the textbooks. 

In this sense, diverse authors (e.g., Woodard et al. 2020; Fellers and Kuiper 2020; DePaolo 

et al. 2016; Seier 2014; Gibbs and Goossens 2013; Leigh and Dowling 2010), have reported 

activities or problems proposals with the finality to make more accessible the study of the 𝜒2 tests, 

goodness-of-fit, independence, and homogeneity, which correspond to the problem areas 

presented in the previous section. However, commonly, in these investigations, the last partial 

meanings of each problem area (i.e., PM3, PM7 y PM11) were used. That is to say; problems are 

proposed to promote the FIR by students, due to the approach used has a high degree of 
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formalization (although these authors do not explicitly refer to FIR). We consider that the first partial 

meanings of each problem area identified here, as in the case of PM1, could be used intuitively to 

promote the logic of the goodness-of-fit-test with the 𝜒2 statistics, that is to say, promote the IIR 

for the case of this test. 

For example, Leihg and Dowling (2010) present data that they collected about the water 

taste from different brands and how these data could be used to perform inferential analyzes with 

the 𝜒2 goodness-of-fit and independence test. For the case of the goodness-of-fit-test, primary 

mathematical objects corresponding to PM3 can be identified, such as the followings procedures: 

establish the degrees of freedom (also associated with the proposition/property), calculate the 𝜒2 

statistic and the p-value. Moreover, linguistic elements such as the use of natural language and the 

usual tabular representation in this type of test are identified.  

In the same sense, Gibbs and Goossens (2013) propose to analyze a dataset about the 

efficacy of HPV vaccines with the 𝜒2 homogeneity test. An analysis of the activity statement and 

solution, in terms of the meanings proposed here, allow revealing the primary mathematical objects 

that correspond to PM11. Another example is that of DePaolo et al. (2016), who propose an activity 

about a sample of 200 transactions, which is solved with the 𝜒2 independence test, where primary 

mathematical objects used (and described) corresponding to PM7. 

In these last two works, software was used for statistical data analysis; in the case of the 

first study, the authors point out that they do not use the 'continuity correction factor,' although some 

data have a frequency of less than five. This is very usual when we are working with software 

because some (e.g., Minitab) do not include the option to use the continuity correction, which 

constitutes a concept/definition and property/proposition corresponding to PM4, PM8, and PM12. 

When we are working with frequencies less than five, the 𝜒2 tests require this correction, but the 

statistical software often gives a warning as an additional note to the results. Therefore, another 

use that can be made of the identified meanings in this article refers to promote what is found in 

the background understanding in the processes or procedures carried out by some statistical 

software, in this case for 𝜒2 tests, this would help a critical review of the statistical results produced 

by the software, with the aim of interpreting them correctly. 

Furthermore, university textbooks (e.g., Devore 2008), present activities for the 𝜒2 tests, 

goodness-of-fit, independence, and homogeneity; however, the tests are introduced in an 'abrupt' 

way, completely formalized and without an introduction or progression in the understanding of the 

test. For example, the first activity on the goodness-of-fit-test in Devore (2008), is about the 
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phenotypes from a dihybrid cross of tomatoes and requiring probing if they are distributed according 

to Mendel's laws. An analysis considering the epistemological characteristics of the identified partial 

meanings would allow us to observe that the practices developed to perform the goodness-of-fit-

test correspond to PM3. While the first activity with the presentation of the homogeneity test deals 

with the homogeneity in production lines concerning five categories that make defective products. 

In a brief analysis, it was possible to identify concepts/definitions such as frequency distribution 

and marginal distribution, properties/propositions like the expected frequency and degrees of 

freedom, procedures like calculating the statistic, for which it is necessary to calculate the expected 

frequency. The previous primary mathematical objects are used in the sense of PM11. Finally, the 

analysis of the activity for the independence test revealed that primary mathematical objects used 

for the development of this test correspond to PM7. 

The analyzes presented could be carried out in greater depth, just as we did with the 

situations identified in the historical evolution. However, for space reasons and not being the scope 

of this work, they are presented succinctly. The objective of evidencing them is to evince the uses 

that can be given to partial meanings and to primary mathematical objects associated with them, 

as well as, to analyze, and to propose activities for promoting the meanings progressively (from 

informal to formal) of the 𝜒2 statistic in teachers and students. 

In this sense, this work purports to be the first step towards a proposal of progressive levels 

of inferential reasoning (that allow a continuous transition from IIR to FIR) for the 𝜒2 statistic, in 

other words, a progression from intuition towards formalization. Indeed, a proposal like this would 

lead to revisiting discussions of statistical education research that lead to associating the IIR with, 

almost exclusively, descriptive statistics concepts (see, for example, Zieffler et al. 2008; Makar and 

Rubin 2009). Thus, a line of research that is generated from our study is related to 'a new 

perspective' of the IIR, perhaps understanding this type of reasoning as processes that involve 

different epistemological characteristics of partial meanings (as well as, intuitive, as pre-formal). In 

other words, it may be necessary to rethink what we understand by IIR and FIR, in terms of 

mathematical and statistical objects and processes associated with the meanings of the notions 

that we are working in our research area. 

 

6 Final reflections 

The present article was intended to characterize the meanings attributed to the Chi-square 

statistic throughout history. With this aim, and with the support of notions from the onto-semiotic 
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approach (OSA), it was possible to identify four crucial problems that, when addressed, give rise 

to four broad "meanings of reference" for this statistic: 1) Goodness-of-fit-test; 2) Test of 

independence; 3) Test of homogeneity; 4) Chi-square distribution. Furthermore, each of the broad 

meanings of reference is composed of partial meanings, which show the progressive evolution 

(from informal to formal) of the 𝜒2 statistic (figure 2). 

An important aspect worth clarifying, although implicitly done throughout this article, it is 

the emphasis that we give to the 𝜒2 statistic and not to the historical development of the 𝜒2 

distribution, this is due to the fact that with the emergence and development of the 𝜒2 statistic, 

establishing the 𝜒2 distribution as the asymptotic distribution of the 𝜒2 statistic and the application 

of the test of independence set off refinements in the 𝜒2 distribution, particularly as regards to the 

degrees of freedom. It is recognized that this distribution has a crucial role because it is the 

distribution that the 𝜒2 statistic follows and for the refinements that the 1, 2 and 3 problems had 

with the evolution of the 𝜒2 distribution. 

Figure 2:  Meanings of the Chi-square statistic 

 
Source: prepared by the authors 

We consider that the present characterization of the meanings of the 𝜒2 statistic enables 

us to access to the mathematical richness and visualize the variety of paths to the teaching and 

learning of this notion, which clearly constitutes an advance for the scientific community, and 

training of teachers, interested in the teaching of statistical notions like the 𝜒2 statistic. While the 

meanings characterized in this article permit to identify mathematical-statistical elements for a 

continuous and progressive transition from IIR to FIR, which could serve, as a future line of 
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research, to build progressive levels from informal to formal, of inferential reasoning on the 𝜒2 

statistic. An example of the use of mathematical-statistical elements for the construction of 

progressive levels of inferential reasoning on the t-Student statistic can be seen in Lugo-Armenta 

and Pino-Fan (2021). The elements of the configuration associated to each one of the meanings 

respectively, constitute epistemic guidelines that will enable to build tasks or didactic sequences 

that promote this type of reasoning with diverse meanings of the 𝜒2 statistic. 
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