Secciones
Referencias
Resumen
Servicios
Descargas
HTML
ePub
PDF
Buscar
Fuente


EUGLOSSINI BEES (HYMENOPTERA: APIDAE) IN SANTA RITA, PANAMA
ABEJAS EUGLOSSINI (HYMENOPTERA: APIDAE) EN SANTA RITA, PANAMÁ
Tecnociencia, vol. 25, no. 1, pp. 26-40, 2023
Universidad de Panamá

Tecnociencia
Universidad de Panamá, Panamá
ISSN: 1609-8102
ISSN-e: 2415-0940
Periodicity: Semestral
vol. 25, no. 1, 2023

Received: 22 July 2022

Accepted: 13 October 2022


This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International.

Abstract: Santa Rita is a town located in the province of Colón, Panama. This area is threatened by various human activities that not only threaten the landscape and its vegetation, but also the integrity of the pollinators that live there. Considering this, we collected samples of bees from the Euglossini tribe in a fragmented area of Santa Rita, to get an idea of the population status in which these bees could be found at the site. Sampling was carried out one day during the dry season and one day in the rainy season of 2017. We collected 179 males belonging to 20 species, belonging to the three genera Euglossa (14 spp.), Eufriesea(4 spp.), and Eulaema (3 spp.). We know that these results are not enough to determine if Euglossini bee populations are stable or have decreased, but they give us a basis on the abundance and richness of the recorded species.

Keywords: Abundance, Colón, conservation, fragmented ecosystems, euglossines.

Resumen: Santa Rita es un poblado ubicado en la provincia de Colón, Panamá. Esta zona está amenazada por diversas actividades humanas que no solo atentan contra el paisaje y su vegetación, sino también con la integridad de los polinizadores que habitan allí. Considerando esto, colectamos muestras de abejas de la tribu Euglossini en un área fragmentada de Santa Rita, con el objetivo de hacernos una idea del estatus poblacional en el que podrían encontrarse estas abejas en el sitio. El muestreo se realizó un día durante la época seca y un día en la época lluviosa del 2017. Colectamos 179 machos pertenecientes a 20 especies, pertenecientes a los tres géneros Euglossa(14 spp.), Eufriesea (4 spp.) y Eulaema (3 spp.). Sabemos que estos resultados no son suficientes para determinar si las poblaciones de abejas Euglossini se encuentran estables o han disminuido, pero nos da una base sobre la abundancia y riqueza de las especies registradas.

Palabras clave: Abundancia, Colón, conservación, ecosistemas fragmentados, euglossinos.

INTRODUCTION

Euglossine bees are distributed exclusively in the Neotropical region and these bees play a critical role in the stability of several plant families since they offer pollination services to a wide range of plants, especially orchid species through a wide range of distance (Dressler 1968; Williams & Dodson 1972; Dressler 1982; Silva & Rebêlo 2002; Roubik & Hanson 2004; Ramírez et al. 2002; Parra-H et al. 2016). These bees have a high affinity to humid and drier forests (Dressler 1982; Silveira et al. 2002; Roubik & Hanson 2004; Santos & Añino 2016). Euglossine bees have been used to evaluate environment quality according to their distribution, susceptibility to disturbance, and resource quality (Pemberton & Wheeler 2006; Hedström et al. 2006; Parra-H & Nates- Parra 2007; Meléndez et al. 2015; Añino et al. 2019).

Studies have shown a decline of pollinators and flying insect biomass around the world due to deforestation, pollution, use of pesticides, fertilizers, herbicides, and climate change (Humphries et al. 1995;

Vanbergen 2013; Goulson et al. 2015; Holland et al. 2015; Nemésio et al. 2016; Dudley et al. 2017; Hallmann et al. 2017; Habel et al. 2019; Vega-Hidalgo et al. 2020). Habitat fragmentation has been recognized as one of the main causes of biodiversity loss (Fahrig 2003; Biesmeijer et al. 2006; Potts et al. 2010; Krauss et al. 2010; Lebuhn et al. 2012; Haddad et al. 2015; Ollerton 2017; Sánchez & Wyckhuys 2019; Van Klink et al. 2020). Bee population declines are occurring even in protected areas (Hallmann et al. 2017; Rada et al. 2019; Vega-Hidalgo et al. 2020). The slightest alteration to plant abundance or phenology due to anthropogenic changes and trends in biodiversity decline may therefore have severe consequences for insect populations (Sánchez & Wyckhuys 2019; Basset & Lamarre 2019). Euglossini bees’ population are declining due to environmental impacts caused by human activities and competition (Hedström et al. 2006; Brosi 2009; Ramalho et al. 2009; Nemésio & Silvera 2010; Potts et al. 2010; Willmer 2012; Vega- Hidalgo et al. 2020). Contrary, Roubik et al. 2021 reported stable populations in a long-term monitoring in Panama.

Importar imagenGiven the importance of orchid bees, the lack of recent information on the region in the past 30 years, continuous development of human activities, deforestation, and current bees and pollinators declines; here we provide recent data about the abundance of Euglossine bees, showing preliminary data of two samplings. Considering previous records on Santa Rita Colon-Panama by Ricklefs et al. (1969) and Roubik & Ackerman (1987). Few flora studies have been carried out in Colón and no formal study have been performed in Santa Rita, where it is believed there is high endemism (Lewis 1971; Ortiz et al. 2019).

MATERIAL AND METHODS

Site selection

Considering the two previous censuses performed on the area, we aimed to detect evidence of changes in euglossine bees’ communities in Santa Rita. The selected area is a fragmented habitat near forest patches, where trees approximately reached a height of less than 8 meters. It is in Colón, Republic of Panama, (9°20'N, 79° 46'W) Figure 1. It is part of the Panama Canal, in the sub-basin of Gatun River (206 m elevation). The

community is located between the protected areas of Chagres and Soberanía National Parks, which are part of the Mesoamerican Biological Corridor and denotes the convergence of biodiversity points in Mesoamerica and Chocó-Darién and forests of the Panama Canal Watershed that contribute to its proper functioning (Ibáñez et al. 2002; Moyer & Shebell 2014).


Figure 1.
Location of the study area (Santa Rita). Google Earth 2022.

Collection

Orchid bee males were collected using an entomological net. Three baits were used: cineole, methyl salicylate, and vanillin. The soaked cotton balls laden baits were hung at about 2 m above the ground and 5 m from each other as described in Nemésio & Morato (2006). These synthetic products mimic natural components found mainly in orchid flowers and are collected by male Euglossini bees to attract females during courtship (Dressler 1982; Eltz et al. 2005). Samplings were done twice, one day each season: the first one by the end of the dry season and the other during the rainy season, 8 April 2017, and 21 October 2017, respectively. Both collections were done from 8:00 a.m. to 12:00 p.m.

Captured bees were pinned, identified, and deposited at the Museo de Invertebrados G. B. Fairchild-Universidad de Panamá (MIUP) in Panamá, Panamá. Taxonomic characterization was based on Roubik & Hanson (2004) key.

RESULTS AND DISCUSSION

We collected a total of 179 male Euglossini bees belonging to 20 species, and three genera: 108 specimens during the dry season and 71 during the rainy season (table 1). Euglossa (14 spp.), Eufriesea (4 spp.), and Eulaema (3 spp.), which represent 30% of 70 species reported for Panama. During each season 13 species were recorded (Table 1). Euglossa imperialis Cockerell 1922 was the most abundant species, followed by E. despecta Moure 1968, E. deceptrix Moure 1968, E. mixta Friese 1899, and Eulaema nigrita Lepeletier 1841. Five species were collected during both seasons: E. bursigera Moure 1970, E. championi Cheeseman 1929, E. imperialis Cockerell 1922, E. mixta Friese 1899 and E. nigrita Lepeletier 1841 (Table 1). During both collections the methyl salicylate bait attracted most bees (58), followed by cineole (33) and vanillin (17). E. deceptrix was the only species attracted to all three scents. The species that registered the most individuals in April were Euglossa despecta Moure, 1968 (21), E. imperialis, and (19) and E. deceptrix (9); those of April were E. imperialis (26), E. cognata Moure 1970 (6), and E. sapphirina Moure 1968 (6).

This study was not as extensive, nor carried out in a protected area, as that of Roubik (2001) in Parque Soberanía, which reported that the most common of the set of species studied gradually declined. Roubik & Ackerman (1987) censused in February 1979, October 1979, March 1980 and February 1986, the same day each month and counted 46 species in Santa Rita Ridge, averaging 22 species per month (ranged 13- 31) approaching the baits. We collected 13 species on both days, which is under their average, but still the minimum of their record. Ricklefs et al. (1969), reported having collected 22 species in Santa Rita Ridge attracting bees with 1,8-cineole, which is the most common attractant of orchid bees. It should be considered that factors such as the seasonality of the species and dispersion of the attractants employed could have influenced the results (Janzen et al. 1982; Pearson & Dressler 1985;

Nemésio & Silveira 2004). It is necessary to conduct long-term studies to demonstrate trends.

Most of the species collected were from the genus Euglossa, which is the most diverse in the tribe (Roubik & Hanson 2004). The diversity and abundance of these bees could be determined by multiple factors such as climate, vegetation, and competition with similar species (Rosenzweig 1995). Even with small collection efforts, E. imperialis seems to be the most abundant species (Roubik & Ackerman 1987; Roubik 2001; Nemésio & Silveira 2007; Rasmussen 2009;Santos & Añino 2016). In general, during the wet season the species abundance decreased, which could be related to flower scarcity, the age distribution of male Euglossini community, and increase of bee numbers early in the year which may provide a flux of young bees with general chemical needs or another environmental factors (Ackerman 1983, 1985; Roubik 2001).

Ricklefs et al. (1969) mentioned 18 species of the genus Euglossa; 17 of these species were also mentioned by Roubik & Ackerman (1987), except for E. villosa Moure, 1968. E. deceptrix and E. maculilabris Moure, 1968 that can be found in the area. As we only collected one day in April and another in October, we did not record all species mentioned by Roubik & Ackerman (1987), but here we add Euglossa obtusa, Eulaema marcii and Eufriesea rufocauda. This may suggest changes to these bees’ community composition. Several human activities are carried out at the area and its forests have been deforested for many years (Roubik & Ackerman 1987). Regardless this area is fragmented, Euglossini bees continue around in search of resources, and it seems that these bees inhabit disturbed areas when the land-use change caused by humans is not extreme, as can be deduced in Brosi et al. (2008) and Galgani-Barraza et al. (2019).

Table 1.
Abundance of Euglossini bees attracted by different fragrances in Santa Rita Arriba, Colon, Panama. C= cineole, SM= methyl salicylate, VA= vanillin

CONCLUSION

Unlike previous studies conducted on the area, we collected 13 Euglossini bee species on both days; it is less than previous averages, possibly due to our small collection effort. This is concerning, but not enough to determine if these bee populations are stable or have declined, nor the possible causes. We know that these collections are not enough to reach any conclusion, but we believe that these preliminary results are locally interesting, so long-term studies that include ecological variables before and during long sampling collections are necessary to understand the trends and community composition that allow comparable statistical analyzes. Protection of insect biodiversity and ecosystem are reasons to conserve small ecosystem fragments. We

encourage researchers to perform live sightings of bees and studies on the flora and vegetation of Santa Rita.

Acknowledgments

Roberto Cambra for allowing us access to the Invertebrate Museum G.

B. Fairchild- Universidad de Panamá (MIUP). Erin Krichilsky and Dumas Gálvez for their relevant comments and insights. Alonso Santos and Rubén Guardia for taxonomic verification and advice. We also thank Rosa De León and Ricardo Fontalvo for their help during fieldwork.

REFERENCES

Ackerman, J.D. (1983). Diversity and seasonality of male euglossine bees (Hymenoptera: Apidae) in Central Panama. Ecology, 64(2): 274– 283.

Ackerman, J.D. (1985). Euglossine bees and their nectar hosts. The botany and natural history of Panama. (ed. D’Arcy, W.G. & Correa, M.D.), pp. 225-233. Missouri Botanical Garden, St. Louis, Mo.

Añino, Y., Parra-H, A., & Gálvez, D. (2019). Are Orchid Bees (Apidae: Euglossini) Good Indicators of the State of Conservation of Neotropical Forests?. Sociobiology, 66(1): 194-197. http://dx.doi.org/10.13102/sociobiology.v66i1.3679

Basset, Y. & Lamarre, G.P. (2019). Toward a world that values insects. Science, 364(6447): 1230-1231. http://doi:10.1126/science.aaw7071

Biesmeijer, J.C., Roberts, S.P., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J. & Kunin,W.E. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313(5785): 351-354. http://doi:10.1126/science.1127863

Brosi, B.J. (2009). The effects of forest fragmentation on Euglossini bee communities (Hymenoptera: Apidae: Euglossini). Biol. Conserv., 142(2): 414–423. https://doi.org/10.1016/j.biocon.2008.11.003

Brosi, B.J., Daily, G.C., Shih, T.M., Oviedo, F., & Durán, G. (2008). The effects of forest fragmentation on bee communities in tropical countryside. J. Appl. Ecol., 45(3): 773-783. http://doi:10.1111/j.1365- 2664.2007.01412.x

Dressler, R.L. (1968). Pollination by euglossine bees. Evolution, 22(1): 202-210.

Dressler, R.L. (1982). Biology of the Orchid bees (Euglossini). Ann. Rev. Ecol. Evol. Syst., 13(1): 373-394.

Dudley, N., Attwood, S.J., Goulson, D., Jarvis, D., Bharucha, Z.P., & Pretty, J. (2017). How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biol. Conserv., 209(1): 449-453.

Eltz, T., Sager, A., & Lunau, K. (2005). Juggling with volatiles: exposure of perfumes by displaying male orchid bees. J. Comp. Physiol. A, 191(7): 575-581. http://doi:10.1007/s00359-005-0603-2

Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Ann. Rev. Ecol. Evol. Syst., 34. 487-515. http://doi:10.1146/annurev. ecolsys.34.011802.132419

Galgani-Barraza, P., Moreno, J.E., Lobo, S., Tribaldos, W., Roubik, D.W., & Wcislo, W.T. (2019). Flower use by late nineteenth-century orchid bees (Eufriesea surinamensis, Hymenoptera, Apidae) nesting in the Catedral Basílica Santa María la Antigua de Panamá. J. Hymenopt. Res., 74:65-81. http://doi:10.3897/jhr.74.39191

Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science,347(6229): 1255957.

Habel, J.C., Samways, M.J., & Schmitt, T. (2019). Mitigating the precipitous decline of terrestrial European insects: requirements for a new strategy. Biodivers. Conserv., 28(6): 1343-1360.

Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules, C.R., Melbourn, B.A., Nicholls, A.O., Orrock, J.L. Song, D.X. & Townshend, J.R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv., 1(2): e1500052. http://doi:10.1126/sciadv.1500052

Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D. & Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS one, 12(10): e0185809. https://doi.org/10.1371/journal.pone.0185809

Hedström, I., Harris, J., & Fergus, K. (2006). Euglossine bees as potential bio-indicators of coffee farmas: Does Forest access, on a seasonal basis, affect abundance? Rev. biol. trop., 54(4): 1189-1195.

Holland, J.M., Smith, B.M., Storkey, J., Lutman, P.J., & Aebischer, N.J. (2015). Managing habitats on English farmland for insect pollinator conservation. Biol. Conserv., 182. 215–222. https://doi.org/10.1016/j.bioco n.2014.12.009

Humphries, C.J., Williams, P.H., & Vane-Wright, R.I. (1995). Measuring biodiversity value for conservation. Ann. Rev. Ecol. Syst., 26: 93-111. https://doi.org/10.1146/annurev.es.26.110195.000521

Ibáñez, R., Condit, R., Angehr, G., Aguilar, S., GarcÍa, T., Martínez, R., Sanjur, A., Stallard, R., Wright, J. & Heckadon, S. (2002). An Ecosystem Report on the Panama Canal: Monitoring the Status of the Forest Communities and the Watershed. Environ. Monit. Assess., 80(1): 65– 95. http://doi:10.1023/A:1020378926399

Janzen, D.H., DeVries, P.J., Higgins, M.L., & Kimsey, L.S. (1982). Seasonal and site variation in Costa Rican euglossine bees at chemical baits in lowland deciduous and evergreen forests. Ecology,63(1): 66- 74. https://doi.org/10.2307/1937032

Krauss, J., Bommarco, R., Guardiola, M., Heikkinen, R.K., Helm, A., Kuussaari, M., Lindborg, R., Ockinger, E., Pärtel, M., Pino, J., Pöyry, J., Raatikainen, K.M., Sang, A., Stefanescu, C., Teder, T., Zobel, M. & Steffan-Dewenter, I. (2010). Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett., 13(5): 597-605. http://doi:10.1111/j.1461-0248.2010. 01457.x

Lebuhn, G., Droege, S., Connor, E.F., Gemmill‐Herren, B., Potts, S.G., Minckley, R.L., Griswold, T., Jean, R., Kula, E., Roubik, D.W., Cane, J., Wright, K.W. (2012). Detecting insect pollinator declines on regional and global scales. Conserv. Biol., 27(1): 113-120. https://doi.org/10.1111/j.1523-1739.2012.01962.x

Lewis, W.H. (1971). High floristic endemism in low cloud forests of Panama. Biotropica, 3: 78-80.

Meléndez, V., Ayala, R., Délfin, H. (2015). Abejas como bioindicadores de perturbaciones en los ecosistemas y el ambiente. Bioindicadores: Guardianes de nuestro futuro ambiental. (ed. González, C., Vallarino, A., Pérez, J., Low, A.), pp. 347-370. El Colegio de la Frontera Sur, México.

Moyer, J., & Shebell, E. (2014). Human-jaguar competition and conflict: a case study in the Colón Biological Corridor. Accessed 22 April 2019. https://www.mcgill.ca/pfss/files/pfss/humanjaguar_competition_and_c onflict a_case_study_in_the_colon_biological_corridor_0.pdf

Nemésio, A., & Morato, E.F. (2006). The orchid-bee fauna (Hymenoptera: Apidae) of Acre state (northwestern Brazil) and a re- evaluation of euglossine bait-trapping. Lundiana, 7(1): 59-64.

Nemésio, A., Silva, D.P., Nabout, J.C., & Varela, S. (2016). Effects of climate change and habitat loss on a forest‐dependent bee species in a tropical fragmented landscape. Insect Conserv. Divers., 9(2): 149-160. https://doi.org/10.1111/icad.12154

Nemésio, A. & Silveira F.A. (2004). Biogeographic notes on rare species of Euglossini (Hymenoptera: Apidae: Apini) occurring in the Brazilian Atlantic rainforest. Neotrop. Entomol., 33(1): 117-120. https://doi.org/10.1590/S1519-566X2004000100021

Nemésio, A., & Silveira, F.A. (2007). Diversity and distribution of orchid bees (Hymenoptera: Apidae) with a revised checklist of species. Neotrop. Entomol., 36(6): 874-888. https://doi.org/10.1590/S1519-566X2007000600008

Nemésio, A., Silveira, F.A. (2010). Forest Fragments with larger core areas better sustain diverse orchid bee faunas (Hymenoptera: Apidae: Euglossini). Neotrop. Entomol., 39(4): 555–561. https://doi.org/10.1590/S1519-566X2010000400014

Ollerton, J. (2017). Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol., Evol. Syst., 48: 353-376.

Ortiz, O.O., Flores, R., McPherson, G., Carrión, J.F., Campos-Pineda, E., & Baldini, R.M. (2019). Additions to the flora of Panama, with comments on plant collections and information gaps. Check List, 15(4): 601-627. https://doi.org/10.15560/15.4.601

Parra-H, A. & Nates-Parra, G. (2007). Variation of the orchid bees community (Hymenoptera: Apidae) in three altered habitats of the Colombian “llano” piedmont. Rev. biol. trop., 55 (3-4). 931-41.

Parra-H, A., Otero, J., Sandino, J.C., Ospina, R. (2016). Abejas de las orquídeas (Hymenoptera: Apidae Euglossini) y su importancia como polinizadoras de amplio rango en ecosistemas naturales. Iniciativa colombiana de polinizadores: Abejas ICPA. (ed. Nates-Parra, G.), pp. 141-155. Universidad Nacional de Colombia, Bogotá.

Pearson, D.L., & Dressler, R.L. (1985). Two-year study of male orchid bee (Hymenoptera: Apidae: Euglossini) attraction to chemical baits in lowland south-eastern Peru. J. Trop. Ecol., 1(1): 37-54. https://www.jstor.org/stable/2559713

Pemberton, R.W., & Wheeler, G.S. (2006). Orchid bees don't need orchids: evidence from the naturalization of an orchid bee in Florida. Ecology, 87(8): 1995-2001.

Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W.E. (2010). Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol., 25(6): 345-353. http://doi:10.1016/j.tree.2010.01.007

Rada, S., Schweiger, O., Harpke, A., Kühn, E., Kuras, T., Settele, J., & Musche, M. (2019). Protected areas do not mitigate biodiversity declines: A case study on butterflies. Divers. Distrib., 25(2): 217-224. https://doi.org/10.1111/ddi.12854

Ramalho, A.V., Gaglianone, M.C., Oliveira, M.L. (2009). Comunidades de abelhas Euglossina (Hymenoptera: Apidae) em fragmentos de Mata Atlântica no Sudeste do Brasil. Rev. Bras. Entomol., 53(1): 95– 101.

Ramírez, S.R., Dressler, R.L., & Ospina, M. (2002). Abejas Euglosinas (Hymenoptera: Apidae) de la Región Neotropical: Listado de especies con notas sobre su biología. Biota Colomb., 3(1): 7-118.

Rasmussen, C. (2009). Diversity and abundance of orchid bees (Hymenoptera: Apidae, Euglossini) in a tropical rainforest succession. Neotrop. Entomol., 38(1): 66-73. http://dx.doi.org/10.1590/S1519- 566X2009000100006

Ricklefs, R.E., Adams, R.M., & Dressler, R.L. (1969). Species diversity of Euglossa in Panama (Hymenoptera: Apidae). Ecology, 50(4): 713- 716. http://doi:10.2307/1936265

Rosenzweig, M.L. (1995). Species diversity in space and time. Cambridge University Press. Cambridge, England. 11-117 pp.

Roubik, D.W., Ackermann, J.D. (1987). Long-term ecology of euglossine orchid-bees (Apidae: Euglossini) in Panama. Oecologia, 73(3): 321–333. https://doi:10.1007/BF00385247

Roubik, D.W. (2001). Ups and downs in pollinator: when is there a decline?. Conserv. Ecol., 5(1):2.

Roubik, D.W. & Hanson, P.E. (2004). Orchid bees of tropical America: Biology and Field Guide. Instituto Nacional de Biodiversidad, Inbio, Heredia, Costa Rica. 370 pp.

Roubik, D.W., Basset, Y., Lopez, Y., Bobadilla, R., Perez, F. & Ramírez S, J. A. (2021). Long-term (1979-2019) dynamics of protected orchid bees in Panama. Conservation Science and Practice, 3(12), e543. https://doi.org/10.1111/csp2.543

Sánchez-Bayo, F., & Wyckhuys, K.A. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv., 232: 8-27. https://doi.org/10.1016/j.biocon.2019.01.020

Santos, A., & Añino, Y.J. (2016). Contribución al conocimiento de la diversidad de abejas de las orquídeas (Apidae: Euglossini) de la Península de Azuero, Panamá. Tecnociencia, 18(2): 45-58.

Silva, F.S., & Rebêlo, J.M. (2002). Population dynamics of Euglossinae bees (Hymenoptera, Apidae) in an early second-growth forest of Cajual Island, in the state of Maranhão, Brazil. Braz. J. Biol., 62(1): 15-23. http://dx.doi.org/10.1590/S1519-69842002000100003

Silveira, F.A., Melo, G.A.R., Almeida, E.A.B. (2002). Abelhas brasileiras: sistemática e identificação. Edioria Composição e Arte, Belo Horizonte, Brazil. 253 pp.

Vanbergen, A.J. (2013). Threats to an ecosystem service: pressures on pollinators. Front Ecol. Environ., 11(5): 251–259.

Van Klink, R., Bowler, D.E., Gongalsky, K.B., Swengel, A.B., Gentile, A., & Chase, J.M. (2020). Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science, 368(6489): 417- 420. https://doi:10.1126/science.aax9931

Vega-Hildago, Á., Añino, Y., Krichilsky, E., Smith, A.R., Santos- Murgas, A., & Gálvez, D. (2020). Decline of native bees (Apidae: Euglossa) in a tropical forest of Panama. Apidologie, 1-13. https://doi.org/10.1007/s13592-020-00781-2

Williams, N.H. & C.H. Dodson, C.H. (1972). Selective attraction of male euglossine bees to orchid floral fragrances and its importance in long distance pollen flow. Evolution, 26(1): 84-95.

Willmer, P. (2012). Ecology: pollinator–plant synchrony tested by climate change. Curr. Biol., 22(4): R131-R132. https://doi.org/10.1016/j.cub.2012.01.009



Buscar:
Ir a la Página
IR
Non-profit publishing model to preserve the academic and open nature of scientific communication
Scientific article viewer generated from XML JATS4R