Análisis de la dependencia lineal de variables relacionadas con los factores de la migración ecuatoriana
Analysis of the linear dependence of variables related to the factors of Ecuadorian migration
Investigación, Tecnología e Innovación
Universidad de Guayaquil, Ecuador
ISSN: 1390-5147
ISSN-e: 2661-6548
Periodicidad: Anual
vol. 12, núm. 12, 2020
Recepción: 03 Septiembre 2019
Aprobación: 21 Octubre 2020
Resumen: El objetivo de este trabajo de investigación es dar a conocer cuáles son las principales causas que provocan la migración en Ecuador, teniendo en cuenta los factores que impulsan a la población ecuatoriana en tomar la salida migratoria como una estrategia colectiva para determinar las causas que una persona tiene al momento de tomar la decisión de migrar a otros país; para este estudio se da a conocer el uso de herramientas estadísticas y probabilísticas como un instrumento informático para la obtención de los resultados; tales como son las tablas de contingencia y su test estadístico como lo es el chi cuadrado. Se usará una herramienta de acceso libre y muy poderoso para el análisis de datos estadísticos como lo es R; con el fin de evidenciar la dependencia lineal de cada una de las variables. En base a los datos analizados, se concluye que el 90% de los ecuatorianos migran porque constan de una residencia extranjera y además aquellos que no cuentan con una ocupación especifica representan el 28%.
Palabras clave: País, Tabla de Contingencia, Chi-Cuadrado, Estadística, Ecuador, Análisis Bivariado.
Abstract: The objective of this research work is to make known are the main causes that cause migration in Ecuador, taking into account the factors that drive the Ecuadorian population to take the migratory exit as a collective strategy to determine the causes that a person has when making the decision to migrate to another country; For this study, the use of statistical and probabilistic tools as a computer instrument to obtain the results is disclosed; such as contingency tables and their statistical test such as chi square. A very powerful and free access tool will be used for the analysis of statistical data, such as R; in order to show the linear dependence of each of the variables. Based on the data analyzed, it is concluded that 90% of Ecuadorians migrate because they have a foreign residence and also those who do not have a specific occupation represent 28%.
Keywords: Country, Contingency Table, Chi-Square, Statistics, Ecuador, Bivariate Analysis.
INTRODUCCIÓN
Las personas con el fin de conseguir un mejor estatus de vida, acceso a bienes y servicios, oportunidad de empleo, desarrollo familiar, seguridad; buscan salir de su país con la expectativa de una mejor calidad de vida, eso es posible a través de la migración; sin embargo, las personas no miden el problema social que causan en sus seres queridos al abandonar su hogar, debido a que la realidad de la migración también plantea otros retos a las familias tales como la separación de familiares durante largos periodos de tiempo.
El tema de migración es muy amplio por lo cual siempre se opta por reducir esta dimensión, es por lo que la investigación (López C., Lorenzen Hiort C., 2014), se centra como caso de estudio la migración de ciudadanos cubanos utilizando rutas rurales. Este problema social se da ya que no existen los recursos necesarios para mantenerse, ni mantener a sus familias; por lo cual se realizó un estudio y se consideraron ciertas variables para resolver el problema de causa de las migraciones al mismo tiempo, para este estudio se utilizó una herramienta probabilística como lo es la regresión lógica. Esta herramienta permite valorar los factores más relevantes de la migración obteniendo solamente una probabilidad; sin embargo, la regresión logística me muestra la relación que hay entre la variable dependiente versus varias variables independientes, caso contrario en lo que respecta al orden de contingencia que me ayuda a identificar variable por variable en grados de dependencia lineal dichas variables y se hace más fácil para las personas que están en proceso de aprendizaje de la estadística.
En el caso de estudio (Ramírez B., González A., 2015), para resolver el problema referente a la migración utilizaron el coeficiente de correlación de Spearman como medida estadística entre dos variables aleatorias; que nos indican asociaciones negativas o positivas respectivamente entre las variables planteadas; es por ello que se determinó que las personas con mayor edad resultan más propensas a migrar, sin embargo, este modelo solo mide el grado de correspondencia que existe entre los rangos que se asignan a los valores de las variables cualitativas. Por este motivo en el presente trabajo se utilizará tablas de contingencia con prueba de chi cuadrado ya que se puede establecer medida de asociación entre variables cualitativas nominales y como resultado se obtiene los porcentajes correspondiente de cada variable; no solo su grado de dependencia y además permite obtener mediante un contraste de hipótesis resultados más precisos pues se dará la afirmación o negación si las variables tienen dependencia.
Respecto a (Canales A., 2014), todos estos cambios migratorios se manifiestan en una mayor complejidad y diversidad de los patrones, rutas y flujos; por lo que surge la necesidad de plantear, reconstruir esquemas y enfoques de análisis para la comprensión de este fenómeno. Por lo tanto, en este trabajo de investigación se da a conocer las causas de este fenómeno con la ayuda de herramientas probabilísticas como lo es correlación de Pearson. Las características de la migración latinoamericana a España y Estados Unidos, se concentra en el gran movimiento de personas del Sur al Norte; en donde se pueden apreciar las diversas modalidades migratorias y sujetos participantes. Sin embargo, las tablas de contingencias son mucho mejor al momento de apreciar las modalidades que usan con más frecuencias para movilizarse hacia sus destinos.
Para la tabulación de las encuestas, (Zambrano I., López V., 2015) utilizó la herramienta básica de Excel que le permitió el desarrollo y elaboración de tablas y gráficos mediante diagramas de líneas de dispersión como de barras. El análisis buscó una integración de datos que aporten a la explicación de la migración en el Ecuador hacia el exterior en el periodo de estudio planteado. Por lo tanto, con el lenguaje de programación R se generará tablas de contingencia, para de esta forma obtener resultados precisos relacionando sus variables, con sus respectivas categorías, en las que se escribirá la frecuencia con que aparecen cada uno de los casos, y usando chi-cuadrado Someter a prueba las hipótesis referidas a distribuciones de frecuencias. En términos generales, esta prueba contrasta frecuencias observadas con las frecuencias esperadas de acuerdo con la hipótesis nula para ello, se recomienda que el autor siga estas instrucciones como modelo para la entrega de su artículo, respetando los estilos, tipos de letra, interlineados, márgenes y demás características de formato establecidas en esta plantilla.
MATERIALES Y MÉTODOS
A continuación, se presenta varios conceptos estadísticos usados durante este trabajo de investigación para la resolución del problema; de igual forma su propósito es mejorar la comprensión del lector.
Recolección de datos
Los datos con los que se trabajó fueron obtenidos de la base de datos de INEC (Instituto Nacional de Estadística y Censo) el cual consta de un millón de datos de personas que migran del país. Estos datos fueron útiles para aplicar una distribución probabilista de tipo binomial y llegar a tener los resultados correspondientes.
Tablas de contingencia
Una tabla de contingencia es una tabla que cuenta las observaciones por múltiples variables categóricas. Las filas y columnas de las tablas corresponden a estas variables categóricas (Minitab I., 2019).
Una tabla de contingencia es una matriz de doble entrada donde se recogen las variables que se desean relacionar, con sus respectivas categorías, en las que se escribirá la frecuencia con que aparecen cada uno de los casos, según categoría (Reguant M., Vilà R., Torrado M., 2018).
Chi-Cuadrado de Pearson
Somete a prueba hipótesis referidas a distribuciones de frecuencias. En términos generales, esta prueba contrasta frecuencias observadas con las frecuencias esperadas de acuerdo con la hipótesis nula (F. Ricardi, 2014).
Definición de parámetros
Oij: Frecuencia observada en la celda (i,j).
Eij: Frecuencia esperada para la celda (i,j).
r: Numero de filas
c: Numero de columnas
Grados de libertad
Es la cantidad de información suministrada por los datos que usted puede "gastar" para estimar los valores de parámetros de población desconocidos y calcular la variabilidad de esas estimaciones. Este valor se determina según el número de observaciones de la muestra y el número de parámetros del modelo (Minitab., 2019).
Nivel de significancia
La diferencia entre un estadístico de muestra y un valor hipotético es estadísticamente significativa si una prueba de hipótesis indica que es muy poco probable que la misma haya ocurrido en virtud de las probabilidades. Para evaluar la significancia estadística, se examina el valor “p” de la prueba; si el valor “p” está por debajo de un nivel de significancia (α) especificado (generalmente 0.10, 0.05 o 0.01), usted puede decir que la diferencia es estadísticamente significativa y rechazar la hipótesis nula de la prueba (Minitab., 2019).
Valor critico
Valores Críticos de la distribución x2 (Facultad Regional, M. 2019). Estos valores se encuentran ya establecidos.
Contraste de hipótesis
Fijar las hipótesis que se quieren contrastar
H0: (Nula) Es aquella en la que asegura que los dos parámetros analizados son independientes uno del otro.
H1: (Alternativa) Es aquella en la que se asegura que los dos parámetros analizados si son dependientes.
Fijar el valor critico
Valor correspondiente de acuerdo con el grado de libertad y al valor de significancia; por lo que en este trabajo se realizara con 0.05.
Elegir un estadístico de contraste
Valor que se toma de los resultados en la prueba de chi-cuadrado.
Decisión de rechazar o aceptar la hipótesis nula
Independientes
Dependientes
Software para análisis estadístico (Rstudio)
RStudio es una interfaz que permite acceder de manera sencilla a toda la potencia de R; el cual es un lenguaje orientado a objetos, destinado para el cálculo estadístico y la generación de gráficos. Ofrece una gran variedad de técnicas estadísticas y gráficas. Es un entorno de análisis y programación estadística muy similar a S en relación con su aspecto externo. Es un lenguaje de programación completo con el que se añaden nuevas técnicas mediante la definición de funciones (Arjona Hidalgo M., Lara Porras A. M. (2019).
Durante el desarrollo de este proyecto, Rstudio fue una herramienta fundamental y de suma importancia debido a la asistencia que brinda para la adquisición de las dependencias de cada una de las variables respecto al motivo de viaje; por lo tanto, facilito la interpretación de los resultados obtenidos.
Funciones de R utilizadas
Función “xtabs”
Genera una tabla de contingencia que nos permite conocer la frecuencia de cada uno de los casos posibles.
Primero se declara una variable “Y” después se le asigna lo que corresponde a la función xtabs (nombre de variable X + nombre de variable Y, nombre de base de datos).
Función “chisq.test”
Realiza la prueba de Chi-Cuadrado que consiste en presentar dos hipótesis para determinar si dos variables están relacionadas o no.
Primero se declara un variable con X nombre después se le asigna lo que corresponde a la función chis.test “nombre_variable(la cual es la tabla de contingencia),correct=FALSE”, después se presenta dicha variable.
Función “totPercents”
Se usa para conocer el porcentaje que corresponde a cada variable después de la prueba de chi-cuadrado.
Para esta función no es necesario almacenar su valor en una variable, se puede presentar directamente con totPercents (Nombre de la variable).
Función “barplot”
Se utiliza para realizar un gráfico de barras que presente la frecuencia de una variable agrupada.
Para esta función se declara barplot (nombre de la variable).
Caso de estudio
El siguiente trabajo de investigación tiene como objetivo analizar la migración en el Ecuador, a través de tablas de contingencia con su respectiva prueba de chi-cuadrado, para definir la dependencia que existe entre las variables. Debido a esto se planteará los parámetros necesarios que nos muestren la frecuencia de los motivos que incitan a los ecuatorianos a tomar la migración como una salida estratégica. El proceso de análisis de datos se realizó a través del programa estadístico R, el cual permite realizar una tabla de contingencia con las funciones “xtabs”, que posteriormente realiza la prueba de chi cuadrado a esa tabla con la función llamada “chisq.test”, dando como resultados el valor de significancia junto con el grado de libertad que indica, al tener un valor de significación mayor al valor critico; las variables estarán relacionadas entre sí. Por último, se hará uso de la función “totPercents” la cual realiza una tabla de porcentajes de las variables.; todo esto con la finalidad de obtener resultados altamente precisos. [13],[14],[15],[16],[17]. (Cevallos Torres L. y Botto Tobar M. , 2019), (Cevallos Torres L. y Guijarro Rodríguez Alfonso, Alarcón Cáceres José, Delgado Veloz Geomayra, Barrera Rivera Mirella, y Alvarado Flores Ronald., 2016), (Valencia Nunez E. R., Melendez Tamano C. F., Valle Alvarez A. T. , Paredes Salinas J. G., P. Salinas C. F., y Cevallos-Torres L. J., 2018)
RESULTADOS Y DISCUSIÓN
Análisis bivariado
¿Existe Dependencia entre el motivo de viaje y el sexo del viajante?
Hombre | Mujer | |
Estudios | 814 | 749 |
Eventos | 163 | 115 |
Negocios | 85 | 28 |
Otros | 269 | 198 |
Residencia | 27696 | 32496 |
Turismo | 2156 | 2082 |
Contraste de hipótesis:
H0: El sexo del viajante no es dependiente del motivo de viaje.
H1: El sexo del viajante es dependiente del motivo de viaje.
Respecto a los datos obtenidos de la prueba de chi-cuadrado se puede aceptar la hipótesis alternativa (H1) , la cual es “El sexo del viajante es dependiente”; ya que el valor de 134.31 es mayor al valor critico que corresponde a 11.07 (134.31≥11.07).
Hombre | Mujer | Total | |
Estudios | 1.2 | 1.1 | 2.3 |
Eventos | 0.2 | 0.2 | 0.4 |
Negocios | 0.1 | 0.0 | 0.2 |
Otros | 0.4 | 0.3 | 0.7 |
Residencia | 41.4 | 48.6 | 90.0 |
Turismo | 3.2 | 3.1 | 6.3 |
Total | 46.6 | 53.4 | 100.0 |
Según los resultados obtenidos se observa que la mujer es la que más viaja con un 48.6% en comparación de los hombres que tiene un 41.4% y el motivo de viaje principal es la residencia.
¿Existe dependencia entre el motivo de viaje respecto a la vía de transporte?
Vía Aérea | Vía Fluvial | Vía Marítimo | Vía Terrestre | |
Estudios | 1559 | 0 | 0 | 4 |
Eventos | 278 | 0 | 0 | 0 |
Negocios | 113 | 0 | 0 | 0 |
Otros | 380 | 0 | 2 | 85 |
Residencia | 59957 | 1 | 0 | 234 |
Turismo | 2605 | 2 | 8 | 1623 |
Contraste de Hipótesis:
H0: La vía de transporte no es dependiente del motivo de viaje.
H1: La vía de transporte es dependiente del motivo de viaje.
Respecto a los datos obtenidos de la prueba de chi-cuadrado se puede aceptar la hipótesis alternativa (H1); la cual es “La vía de transporte es dependiente del motivo de viaje” ya que el valor de 20743 es mayor al valor critico que corresponde a 25 (20743 25) .
Vía Aérea | Vía Fluvial | Vía Marítimo | Vía Terrestre | Total | |
Estudios | 2.3 | 0 | 0 | 0.0 | 2.3 |
Eventos | 0.4 | 0 | 0 | 0.0 | 0.4 |
Negocios | 0.2 | 0 | 0 | 0.0 | 0.2 |
Otros | 0.6 | 0 | 0 | 0.1 | 0.7 |
Residencia | 89.7 | 0 | 0 | 0.4 | 90.0 |
Turismo | 3.9 | 0 | 0 | 2.4 | 6.3 |
Total | 97.1 | 0 | 0 | 2.9 | 100.0 |
Se determina con los resultados que la vía de transporte más usada por la cual migran los ecuatorianos; es la vía aérea que corresponde a un 89.7% ya que retornan para su lugar de residencia en el extranjero.
¿Existe Dependencia entre el motivo de viaje respecto a la ocupación del migrante?
Estudios | Eventos | Negocios | Otros | Residencia | Turismo | |
Amas de casa | 6 | 24 | 3 | 41 | 9856 | 494 |
Estudiantes | 1145 | 30 | 6 | 67 | 4876 | 549 |
Jubilados y Pensionistas | 2 | 22 | 2 | 25 | 4050 | 260 |
Personal de apoyo administrativo no clasificado bajo otros epígrafes | 21 | 37 | 11 | 41 | 7754 | 329 |
Sin especificar | 138 | 68 | 43 | 130 | 19255 | 1002 |
Contraste de Hipótesis:
H0: La ocupación del migrante no es dependiente del motivo de viaje.
H1: La ocupación del migrante es dependiente del motivo de viaje.
Respecto a los datos obtenidos de la prueba de chi-cuadrado se puede aceptar la hipótesis alternativa (H1) ; la cual es “La ocupación del migrante es dependiente del motivo de viaje” ya que el valor de 10581 es mayor al valor critico que corresponde a 814.82 (10581 814.82) .
Algoritmo 16.
Los resultados indican que los ecuatorianos sin una ocupación específica con un 28%; son aquellos que migran del país y adicionalmente porque tienen una residencia extranjera.
¿Existe Dependencia entre el motivo de viaje respecto al país de destino?
Estudios | Eventos | Negocios | Otros | Residencia | Turismo | |
Argentina | 152 | 11 | 5 | 15 | 1138 | 186 |
Canadá | 108 | 4 | 5 | 18 | 1444 | 112 |
Chile | 18 | 10 | 5 | 63 | 2460 | 331 |
España | 175 | 52 | 8 | 65 | 15483 | 747 |
Estados Unidos de América | 563 | 93 | 39 | 136 | 28271 | 1296 |
Italia | 12 | 16 | 3 | 16 | 3274 | 155 |
Contraste de Hipótesis:
H0: El país de destino del migrante no es dependiente al motivo de viaje.
H1: El país de destino del migrante es dependiente del motivo de viaje.
Respecto a los datos obtenidos de la prueba de chi-cuadrado se puede aceptar la hipótesis alternativa (H1); la cual es “El país de destino del migrante no es independiente del motivo de viaje” ya que el valor de 10016 es mayor al valor critico que corresponde a 689.55 (1001 689.55).
Los resultados nos indican que los migrantes ecuatorianos tienen como país de destino más frecuente a Estados Unidos con 42.3% y Estonia con 23.2% ; ya que residen en dichos países. Un motivo de viaje adicional es el turístico hacia los mismos países.
CONCLUSIONES
La migración es uno de los signos que muestra con mayor claridad las desigualdades estructurales entre los distintos países y regiones asociados a los procesos de globalización. Ecuador, no se encuentra excluido de esta realidad, ya que actualmente la migración de ecuatorianos, no sólo se ha intensificado, sino que también ha disminuido, tanto en términos de sus orígenes, como de sus destinos y modalidades migratorias.
En este trabajo de investigación, se ha documentado con información estadística reciente, haciendo uso del Software Rstudio, la cual fue una herramienta fundamental por la asistencia brindada para la adquisición de las dependencias de cada una de las variables respecto al motivo de viaje; por lo tanto, facilitó la interpretación de los resultados obtenidos.
REFERENCIAS BIBLIOGRAFICAS
López, C.; Hiort-Lorenzen, C. (2014). Tablas de Contingencia y Modelos de Regresión Logística aplicados a cuatro rutas migratorias a partir del medio rural en Cuba. Población y Salud en Mesoamérica.
Ramírez, B.; González, A. (2015). La migración como respuesta de los campesinos ante la crisis del café: estudio en tres municipios del Estado de Puebla. Ra Ximhai.
Canales, A., (2014). Panorama actual de la migración internacional en América Latina. Revista Latinoamericana de Población.
Zambrano, I.; López, V. (2015). Análisis de los Factoes Determinantes de la Migración del Ecuador hacia otros países y su Incidencia en la Economía ecuatoriana. Guayaquil: Universidad Católica Santiago de Guayaquil.
Minitab, I. (2019). Tablas de contingencia. Minitab.com. Consulta en linea.
Reguant, M.; Vilà, R.; Torrado, M. (2018). La relación entre dos variables según la escala de medicion con SPSS. REIRE. Consulta en línea.
Ricardi, F. (2014). Estadística aplicada a la investigación en salud. MEDWave.
Minitab. (2019). Grados de Libertad. Minitab LLC. Consulta en línea.
Minitab. (2019). Significancia estadística y práctica. Minitab LLC. Consulta en línea.
Facultad Regional, M. (2019). Valores críticos de la distribución. StudyLib. Consulta en línea.
Hidalgo-Arjona, M.; Lara-Porras, A. M. (2019). Estadistica. Universidad de Granada. Consulta en línea.
Cevallos-Torres, L.; Guijarro-Rodríguez, A.; López-Domínguez Rivas, L. (2016). Factores que inciden en el mal uso de la información en trabajos de investigación científica. Revista Didasc@lia: Didáctica y Educación.
Cevallos-Torres, L.; Botto-Tobar, M. (2019). Case Study: Logistical Behavior in the Use of Urban Transport Using the Monte Carlo Simulation Method.
Cevallos-Torres, L.; Botto-Tobar, M. (2019). Case Study: Project-Based Learning to Evaluate Probability Distributions in Medical Area.
Cevallos-Torres, L., L.; Botto-Tobar, M. (2019). Case Study: Probabilistic Estimates in the Application of Inventory Models for Perishable Products.
Cevallos-Torres, L.; Guijarro-Rodriguez, A.; Alarcon-Caceres, J.; Delgado Veloz, G.; Barrera Rivera, M.; Alvarado-Flores, R. (2016). Análisis estadístico de correlación entre las dosis de eritropoyetina y el nivel de hemoglobina en pacientes con insuficiencia renal crónica.
Valencia-Nunez, E.; Melendez-Tamano, C.; Valle-Alvarez, A.; Paredes Salinas, J.; Perez-Salinas, C.; Cevallos-Torres, L. (2018). Virtual classrooms and their use, measured with a statistical technique: The case of the Technical University of Ambato — Ecuador.
Notas